
PikaPython
Release 0.1

Lyon

Jul 16, 2023

CONTENTS

1 Introduction 3
1.1 Principle introduction . 3
1.2 Demo show . 13
1.3 Syntax support . 18

2 Get Start 19
2.1 How to Get Started with PikaPython using KEIL Simulator . 19
2.2 Use BSP project . 27
2.3 Start with RT-Thread package . 34
2.4 Start with CMSIS-PACK . 41
2.5 Start with the Docker Development Environment . 44
2.6 Start with the LVGL GUI Simulation Project . 45
2.7 Play Python on Raspberry Pi Pico in MDK . 53
2.8 ARM-2D based GUI simulation project . 54

3 Development Board 65
3.1 Pika Pie Development Board Quick Start . 65

4 Porting 97
4.1 Deploy to new platform in ten minutes . 97
4.2 Interactive Run . 107
4.3 Docking with IDE . 112
4.4 Serial port download Python script . 113
4.5 Running Files Using the File System . 114

5 Module Development 115
5.1 Module Import . 115
5.2 Package manager . 121

6 Standard Library 125
6.1 PikaStdLib standard library . 125
6.2 PikaStdDevice Standard Device . 126
6.3 PikaStdData data structure . 133
6.4 PikaStdTask multitasking . 136
6.5 PikaDebug debugger . 138
6.6 PikaCV Image Processing Libraries . 140
6.7 requests module declaration . 144
6.8 PIKA-MQTT libary . 147

7 C Module - bind C code to Python module 155
7.1 PikaPython C module overview . 155

i

7.2 PikaPython C module development process . 161
7.3 C module variable parameters . 169
7.4 C module keyword parameters . 170
7.5 C module returns List/Dict . 170
7.6 C module constants . 171
7.7 C module initialization . 172
7.8 Module clipping . 172

8 Kernal API 177
8.1 Pika object PikaObj . 177
8.2 Parameter list Args . 180
8.3 Generic parameters Arg . 182
8.4 String pool Strs . 184

9 Configuration and advanced features 187
9.1 PikaPython configuration manual . 187
9.2 Run Bytecode Directly . 190
9.3 Event callback mechanism . 192
9.4 Compact Memory Pools . 197
9.5 Interrupting a running script . 198

10 Contribute 199
10.1 How to contribute . 199
10.2 How to contribute to PikaPython BSP . 200
10.3 How to contribute to modules . 201
10.4 How to contribute to the standard library . 203
10.5 How to contribute to the kernel . 216

11 Column Tutorial 219
11.1 STM32F429 PikaPython Practice Notes . 219
11.2 MM32 PikaPython Practical development . 219

12 Selected Technical Articles 221
12.1 Issue 1 . 221

13 Business cooperation 223
13.1 General . 223
13.2 Source code usage . 223
13.3 Custom Development Services . 223
13.4 product marketing . 224
13.5 Training Services . 224

14 Development Meeting 225
14.1 PikaPython kernel advanced . 225

ii

PikaPython, Release 0.1

: http://pikapython.com/doc

PikaPython is a completely rewritten ultra-lightweight python engine with zero dependencies, zero configuration, and
can run under less than 4KB of RAM (such as stm32g030c8 and stm32f103c8), making it extremely easy to deploy
and scale.

You can help us improve the document by Pull Request on the document source repo: https://github.com/pikasTech/
pikadoc-en

CONTENTS 1

http://pikapython.com/doc
https://github.com/pikasTech/pikadoc-en
https://github.com/pikasTech/pikadoc-en

PikaPython, Release 0.1

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

1.1 Principle introduction

content:

• Introduction MCU and scripting language

• The principle analysis of PikaPython

• Light a lamp with Pikascript

• use PikaPython to implement an addition function

1.1.1 Introduction MCU and scripting languages

In embedded application scenarios such as IOT and smart terminals, script development is a convenient and fast solu-
tion.

When it comes to the development of embedded scripting languages, the first thing that comes to mind is micropython.
Micropython allows engineers to use the scripting language python for MCU development, which greatly reduces the
development threshold.

However, there are not many development boards that can be used directly in the development of micropython. It is
obviously a huge project and a high threshold to transplant micropython for the MCU without ready-made micropython
firmware.

Moreover, the operating efficiency of python is low, which is especially obvious in the MCU with limited resources.
It is also difficult to make full use of the hardware features such as interrupt and dma of MCU for development with
python.

In applications such as high real-time signal processing, data acquisition, and real-time control, it is difficult for python
to be truly implemented in the production environment.

For now, in the development of mcu, about 80% of the development is still using the c language, and c++ only accounts
for less than 20%.

But there is no doubt that the convenience of scripting languages is very obvious. Server-side developers are often
familiar with object-oriented scripting languages such as python and JavaScript.

If the function of MCU can be called directly from the scripting language, the development difficulty will be signifi-
cantly reduced.

3

PikaPython, Release 0.1

Then, if you use the c language for MCU embedded development, and provide an object-oriented scripting language
calling interface to the host computer or server, can you take into account the MCU operating efficiency and develop-
ment efficiency?

The Pikasciprt library introduced in this article does exactly that.

Pikascrpit library can provide object-oriented scripting language calling interface for mcu project developed in C lan-
guage. PikaPython has the following features:

• Support bare metal operation, can run in mcu with more than 4Kb memory, such as stm32f103, esp32.

• Support cross-platform, can run in linux environment.

• Code is readable, uses only the C standard library, is structured as clearly as possible (as far as I can), and uses
few macros.

1.1.2 The principle analysis of PikaPython

The schematic diagram of the architecture of PikaPython is shown in the following figure. We analyze it layer by layer
from top to bottom.

4 Chapter 1. Introduction

PikaPython, Release 0.1

PikaRun script run layer

The PikaRun script running layer is the top-level calling interface of PikaPython, and script running can be realized
only by calling obj_run. When calling obj_run, you need to specify an object. When the script runs, it will retrieve the
methods of this object and the methods of the sub-objects of this object.

The following figure shows a common object structure in embedded development. sys is the top-level object. The sys
object has a reboot() method. The device sub-object and the task sub-object are mounted under the sys object. These
two objects The sub-objects are mounted below, and each sub-object has its own method.

At this time, we only need to pass in the pointer of the top sys object in obj_run, and you can call all methods of all
objects with the method shown in the following figure. Among them, the reboot() method directly belongs to the
sys object, so it can be called by directly running obj_run(sys, "reboot()"), and the led object is called through
obj_run(sys, "device.led. on()") to call.

1.1. Principle introduction 5

PikaPython, Release 0.1

In actual development, we can let the mcu run the data received by the serial port directly as a script. E.g:

obj_run(sys, uartReceiveBuff);

Where uartReceiveBuff is the data received by the serial port.

At this time, send "device.led.on()" to the serial port of the mcu, and the led light can be turned on.

PikaObj Object Support Layer

As mentioned in the previous section, we already know how to use PikaPython to execute scripts within an existing
object structure. So the next question is, how to construct objects, and how to define properties and methods for objects?

(1) Constructor function

PikaPython constructs objects through a constructor function. A constructor function corresponds to a class in
PikaPython. The constructor function for an LED is shown below. In PikaPython, all constructor functions use the
same entry and return parameters.

The entry parameter args is a parameter list. The args is internally based on a linked list, and any number and type
of parameters can be passed in. Here args is the initialization parameter of the constructor, which will be used when
constructing with parameters.

The return value of the constructor function is a PikaObj object.

PikaObj *New_LED(Args *args){
// inherited from MimiObj base class
PikaObj *self = New_PikaObj(args);
// define properties for the object
obj_setInt(self, "isOn", 0);
// Bind the on() method to the LED1 object

(continues on next page)

6 Chapter 1. Introduction

PikaPython, Release 0.1

(continued from previous page)

obj_defineMethod(self, "on()", onFun);
return self;

}

The first line of the constructor is for class inheritance. The LED class inherits from the Pikaobj base class, which is
the source of all classes.

obj_setInt defines a property for the LED class, the property name is "isOn", and the initial value is 0.

obj_defineMethod binds a method to the LED class, and the bound method is the on() method. onFun is a function
pointer to the c native function to which the on() method is bound. The specific way of writing the onFun function is
introduced in Chapters 3 and 4.

(2) Construct the object

There are two ways to construct objects. One is to construct the object passed in by obj_run, which is called the root
object, such as the sys object in the following figure, and the other objects are general objects, which are mounted
under the root object.

Generally, only one root object is constructed in a project.

1.1. Principle introduction 7

PikaPython, Release 0.1

The newRootObj function is used to construct the root object. To construct a root object, you need to pass in the object
name "led" and the constructor function pointer. The return value of newRootObj is the pointer of the root object.

PikaObj *led = newRootObj("led", New_LED);

The construction of general objects is done in the constructor of the parent object. If you want to mount the led child
object under the sys object, you can write the constructor function of the SYS class like this:

PikaObj * New_SYS(Args *args){
// inherited from MimiObj base class
PikaObj *self = New_PikaObj(args);
// Import the LED class through the constructor of the LED class
obj_import(self, "LED", New_LED);
// Use the LED class to create a new led object, and the led object is used as a sub-

→˓object of the sys object
obj_newObj(self, "led", "LED");
return self;

}

obj_import imports a class through the function pointer of the constructor. The imported class in the above code is
named LED. obj_newObj creates a new object through the imported class, and the new object is mounted as a sub-object
under the current class.

At this time, by calling the following function, you can get a sys root object that mounts the led object.

PikaObj *sys = newRootObj("sys", New_SYS);

8 Chapter 1. Introduction

PikaPython, Release 0.1

dataArgs dynamic parameter list

dataArgs is a dynamic parameter list based on a linked list. Its structure is Args. dataArgs dynamically applies for
and releases memory at runtime, so you can add, delete, modify, check parameters at runtime, and attribute and method
information of Pikaobj The access is based on the dataArgs parameter list.

dataArgs supports integer, floating point, string, pointer type parameters, and also supports binding native C language
variables as parameters in dataArgs.

The following example is the basic usage of Args. The implementation principle of dataArgs will be introduced in
subsequent articles, and will not be emphasized in this article.

// create a new parameter list
Args *args = New_Args();
// Store an integer parameter a into the parameter list with a value of 1
args_setInt(args, "a", 1);
// Take the parameter a, the value is 1
int a = args_getInt(args, "a");
// modify the value of a to 2
args_setInt(args, "a", 2);
// Take out a again, the value is 2
a = args_getInt(args, "a");
// destroy the parameter list
args_deinit(args);

dataMemory

dataMemory provides dynamic memory allocation and release for dataArgs, which is not the focus of this article.

1.1.3 Light a light with PikaPython

Then let’s light a light and see how PikaPython provides object-oriented scripting support for mcu in actual projects.

Let’s take the HAL library of STM32 as an example. Suppose an LED light is connected to pin PA8, which we call
led1. When PA8 is pulled high, the light is on, and when it is pulled low, the light is off.

Then to turn on the light led1, you need to use the following c language code:

HAL_GPIO_WritePin(GPIOA,GPIO_PIN_8,SET)

We hope to use the following object-oriented script to turn on the lights more elegantly~

led1.on()

Let’s see how to use PikaPython to achieve this requirement.

1.1. Principle introduction 9

PikaPython, Release 0.1

Write an onFun() function.

void onFun(MimiObj *self, Args *args){
HAL_GPIO_WritePin(GPIOA,GPIO_PIN_8,SET);

}

This function will be registered in the script object as a method. After registration, it will no longer be called by the
developer in C language development, but will only be called by the script interpreter when the script is running.

The entry parameters of the onFun() function are self and args, where self is the objectpointer, args is a list of
incoming and outgoing arguments (used in Chapter 4).

In PikaPython, all functions bound as methods use these two entry parameters.

Write the constructor for the LED1 class.

PikaObj * New_LED1(Args *args){
// Inherited from PikaObj base class
MimiObj *self = New_PikaObj(args);
// Bind the on() method to the LED1 object
obj_defineMethod(self, "on()", onFun);
return self;

}

obj_defineMethod is used to bind the written C language function as the method of the script object.

Here, the function pointer of the native function onFun() of the C language is registered into the object as a parameter,
and the "on()" string declares the method name and parameters when the script is called, here "on()" Methods have
no parameters, and method binding with parameters is introduced in Chapter 4.

Write the constructor for the root object.

PikaObj * New_MYROOT(Args *args){
// inherited from MimiObj base class
MimiObj *self = New_PikaObj(args);
// Import the LED1 class
obj_import(root, "LED1", New_LED1);
// Construct sub-object "led1", the class of "led1" is "LED1"
obj_newObj(root, "led1", "LED1");
return self;

}

obj_import imports the LED1 class through the function pointer of the constructor.

obj_newObj creates a new led1 object through the imported LED1 class, and the led1 object is mounted as a sub-
object under the MYROOT class.

10 Chapter 1. Introduction

PikaPython, Release 0.1

Create a root object and listen for incoming data from the serial port. When the entire row of data is
obtained, it is directly executed as a script.

int uartReceiveOk; //The flag bit that the serial port single-line reception is completed
char uartReceiveBuff[256];//Single-line data received by serial port
int main(){

// Hardware initialization code is omitted

// create root object
PikaObj *myRoot = newRootObj("myRoot", New_MYROOT);
while(1){

// The serial port has received a single line of data
if(uartReceiveOk){

// Execute single-line data input from serial port
obj_run(myRoot, uartReceiveBuff);
// Clear the serial port receive flag
uartReceiveOk = 0;

}
}

}

At this time, just send led1.on() to the serial port of mcu, the light will be on (magic no~)

1.1.4 Implement an addition function in PikaPython.

The method in the above example has no input and output. In the following example, we will define a TEST class and
add an add method to the TEST class to implement the addition function. method of input and output.

Write an add() function.

Like the last onFun function, the function to be bound this time is the addFun function.

void addFun(PikaObj *self, Args *args) {
//get the input parameters
int val1 = args_getInt(args, "val1");
int val2 = args_getInt(args, "val2");
//implement method function
int res = val1 + val2;
// pass the return value back to the parameter list
method_returnInt(args, res);

}

args_getInt is used to get integer parameters from the parameter list, here the input parameters val1 and val2 are
taken from the parameter list. The parameter list also supports float type, string type and pointer type.

method_returnInt is used to pass the return value of the method, and it can also return float type, string type and
pointer type.

1.1. Principle introduction 11

PikaPython, Release 0.1

Define the constructor of the test class

PikaObj *New_PikaObj_test(Args *args){
//Inherit MimiObj base class
MimiObj *self = New_PikaObj(args);
// bind method
obj_defineMethod(self, "add(val1:int, val2:int)->int", addFun);
return self;

}

This time use obj_defineMethod to bind a method with input and output parameters.

"add(val1:int,val2:int)->int" is python’s typed function declaration syntax, indicating that the add method
has two input parameters, val1 and val2 of type int, and the output The parameter is also of type int. Likewise,
pass a function pointer to the addFun function.

Write the constructor for the root object.

PikaObj * New_MYROOT(Args *args){
// Inherited from PikaObj base class
PikaObj *self = New_PikaObj(args);
// import the TEST class
obj_import(self, "TEST", New_PikaObj_test);
// Construct sub-object "test", the class of "test" is "TEST"
obj_newObj(self, "test", "TEST");
return self;

}

Mount the test child object in the root object.

Create object and test run script

void main(){
// create a new root object
PikaObj *root = newRootObj("root", New_MYROOT);
//Run the script (also supports the calling method of "res = test.add(val1 = 1,␣

→˓val2= 2)")
obj_run(root , "res = test.add(1, 2)");
// Get the attribute value res from the root object
int res = obj_getInt(root, "res");
//destroy the root object
obj_deinit(root);
/* print return value res = 3*/
printf("%d\r\n", res);

}

After obj_run runs the script, it will dynamically create a res property, which belongs to the root object.

obj_deinit is used to destroy the object, all child objects mounted under the root object will be automatically
destroyed.

In this example, the root object mounts the test object, so the test object will be automatically destroyed before the
root object is destroyed.

12 Chapter 1. Introduction

PikaPython, Release 0.1

1.1.5 Constructing classes and objects more easily

Implementing a class by writing a constructor function is still a bit cumbersome. In practice, PikaPython provides a
tool to automatically generate constructor functions: PikScript precompiler.

Just declare a class in Python syntax and it will automatically link to C functions, see C Module -> Making C Libraries
into Python Libraries

1.2 Demo show

I want to run a Python with a microcontroller, I have to use linux virtual machine + cross-compilation tool chain +
command line compile micropython firmware, but also have to use the DfuSe tool to burn the firmware, burned also
can not use the C debugger to debug.

I want to expand a C module of my own, but I have to learn to use some completely unintelligible macro functions, and
I have to register them manually, and I have to write makeFile, and I can’t debug C after compilation.

I am poor, can not afford to buy STM32F4, want to buy a STM32F103C8T6 micropython development board, Taobao
a search, seems not.

Now the C8T6 is also expensive, I still want to use F0, use G0, with domestic chips, can it work?

It seems that it is not very easy to port micropython to G0.

So? Is there another way to play?

In other words, I want to develop with Keil, debug with Keil, and I want to use the cheapest microcontroller, and it’s
very easy to develop C modules.

How about trying PikaPython?

What is PikaPython?

PikaPython provides extremely easy to deploy and extend Python scripting support for resource-constrained mcu. It
doesn’t require an OS, it runs bare metal, and it doesn’t require a filesystem.

PikaPython supports bare-metal operation, at least for mcu with RAM 4kB and FLASH 32kB, the recommended
configuration is RAM 10kB and FLASH 64kB, such as stm32f103c8t6 and stm32g070RBT6, which have no pressure
at all and even meet the recommended configuration.

And support Keil, IAR, RT-Thread studio, segger embedded studio and other IDE development, zero dependencies,
zero configuration, out-of-the-box, extremely easy to integrate into the existing C project.

These are all demos of STM32G070RBT6.

1.2.1 Demo 01 Light up

import PikaStdLib
import machine

mem = PikaStdLib.MemChecker()
io1 = machine.GPIO()
time = machine.Time()

io1.setPin('PA8')
io1.setMode('out')
io1.enable()

(continues on next page)

1.2. Demo show 13

index_cmodule.html
index_cmodule.html

PikaPython, Release 0.1

(continued from previous page)

io1.low()

print('hello pikascript')
print('mem.max:')
mem.max()
print('mem.now:')
mem.now()

while True:
io1.low()
time.sleep_ms(500)
io1.high()
time.sleep_ms(500)

Look at the script, it’s all Python3 standard syntax.

The light is flashing.

1.2.2 Demo 02 Serial port test

import PikaStdLib
import machine

time = machine.Time()
uart = machine.UART()
uart.setId(1)
uart.setBaudRate(115200)
uart.enable()

while True:
time.sleep_ms(500)
readBuff = uart.read(2)
print('read 2 char:')
print(readBuff)

Open a serial port and try to read two characters

very smooth

14 Chapter 1. Introduction

PikaPython, Release 0.1

1.2.3 Demo 03 Try reading an ADC

import PikaStdLib
import machine

time = machine.Time()
adc1 = machine.ADC()

adc1.setPin('PA1')
adc1.enable()

while True:
val = adc1.read()
print('adc1 value:')
print(val)
time.sleep_ms(500)

Again a few lines of script fixes it.

This is the output result.

The maximum value of RAM occupied by these demos is only 3.56K, including the 1K stack is also 4.56K, the maxi-
mum Flash occupation is 30.4K, using the STM32F103C8T6’s 20K RAM and 64K Flash as the standard, RAM is only
used up less than 25%, Flash is only used up less than 50%, simply more resources do not know how to spend. This is
a lot of resources.

Also running Python, we can briefly compare the common chip STM32F405RG for micropython and the chip
STM32G070CB for PikaPython.

1.2. Demo show 15

PikaPython, Release 0.1

1.2.4 RAM resource comparison

1.2.5 Flash resource comparison

16 Chapter 1. Introduction

PikaPython, Release 0.1

1.2.6 Reference price comparison (take the price of 10 pieces of Lichuang Mall on
September 11, 2021 as a reference)

image

1.2.7 How about the expansion ability?

In addition to device drivers, developing custom python script bindings for mcu is very easy with the pikascript de-
velopment framework. The following two demos are custom C module extensions that develop some python script
interfaces based on the ARM-2D image driver library.

1.2.8 A few small squares~

1.2.9 Several rotating suns~

1.2.10 So, is PikaPython open source?

Of course, this is the github home page of PikaPython: https://github.com/pikasTech/pikascript

1.2. Demo show 17

https://github.com/pikasTech/pikascript

PikaPython, Release 0.1

1.2.11 Is it difficult to develop?

PikaPython has prepared rich demos and development guides from shallow to deep for developers, and the guides will
continue to be improved and maintained.

1.2.12 Can it be commercialized?

Of course! PikaPython uses the MIT protocol and allows modifications and commercialization, but be careful to keep
the original author’s byline.

1.3 Syntax support

Support for a subset of python3 standard syntax.

1.3.1 object support

1.3.2 Operator

1.3.3 Control flow

1.3.4 Module

1.3.5 List/Dict

1.3.6 Exception

1.3.7 Slice

1.3.8 Other keywords/Syntax

18 Chapter 1. Introduction

CHAPTER

TWO

GET START

2.1 How to Get Started with PikaPython using KEIL Simulator

In this article, we introduce a new way of playing PikaPython without hardware, i.e. using simulation in MDK. The
target board of simulation is stm32f103, and you can experience the fun of pikascript immediately after downloading
the project.

2.1.1 Create project

Open the pikascript official website http://pikascript.com

Select simulation-keil and click “Start Generation”

19

http://pikascript.com

PikaPython, Release 0.1

Unzip the downloaded zip archive and open the project

Run the simulation project

Make sure you have select the simulator as the debugging target

20 Chapter 2. Get Start

PikaPython, Release 0.1

Compile and debug:

Once entering the debug session, make sure you have opened the serial windows as shown below:

run and check the output:

2.1. How to Get Started with PikaPython using KEIL Simulator 21

PikaPython, Release 0.1

2.1.2 REPL

Python scripts can be run interactively by typing them directly in the UART window.

NOTE: Please use With 4 white-spaces for indentation.

22 Chapter 2. Get Start

PikaPython, Release 0.1

2.1.3 How to Run a different python script

Open the main.py in any editor, e.g. vscode:

In main.py, you might see something similar to:

main.py
import Device
import PikaStdLib

led = Device.LED()
uart = Device.Uart()
mem = PikaStdLib.MemChecker()

print('hello wrold')
uart.setName('com1')
uart.send('My name is:')
uart.printName()
print('mem used max:')
mem.max()
print('mem used now:')
mem.now()

This script uses standard python3 syntax. Suppose we have already modified this script, so how to run it on the device?

The interesting part is, pikascript uses a method similar to java, i.e. it is semi-compiled and semi-interpreted. For
example, the pikascript compiler compiles classes and methods, while PikaVM interprets method-calls and object-
creation/destruction at runtime.

The pikascript compilation is a two-step process:

1. Using pikascript compiler to compile the .py files into .c and .h files and store them in the pikascript-api

2.1. How to Get Started with PikaPython using KEIL Simulator 23

PikaPython, Release 0.1

folder.

2. Using the ordinary c compiler to compile all the c source files and generate an executable image for the target
device.

Double-click rust-msc-vxx.yy.zz.exe to run the pika precompiler which is written in Rust.

NOTE: Here xx.yy.zz is the version number.

If you want to ensure that the updated script is compiled as expected, please

1. delete all files in the pikascript-api folder,

2. run the precompiler and

3. check whether the new .c and .h files have been generated or not.

IMPORTANT: Please do NOT remove the pikascript-api folder but only the files inside.

Here is an example that shows the *.c and *h files generated in the pikascript-api folder

24 Chapter 2. Get Start

PikaPython, Release 0.1

Now, let’s modify main.py as a practice:

import Device
import PikaStdLib

led = Device.LED()
uart = Device.Uart()
mem = PikaStdLib.MemChecker()

print('hello wrold')
uart.setName('com1')
uart.send('My name is:')
uart.printName()
print('mem used max:')
mem.max()
print('mem used now:')
mem.now()

new code start
print('add new code start')

(continues on next page)

2.1. How to Get Started with PikaPython using KEIL Simulator 25

PikaPython, Release 0.1

(continued from previous page)

uart.setName('com2')
uart.printName()
print('add new code end')
new code end

As you can see, we have added 4 new lines to the main.py. Let’s compile and run:

Compile pikascript-api

Compile the keil project and enter the debugging session:

run and observe the output

26 Chapter 2. Get Start

PikaPython, Release 0.1

As shown above, there are 3 new lines in the output, indicating that our modification works as expected.

That’s all, enjoy!!

2.2 Use BSP project

2.2.1 create project

Enter pikascript official website http://pikascript.com Select the platform, module, and click “Start Build”. (The default
module will be automatically selected after selecting the platform)

2.2. Use BSP project 27

http://pikascript.com

PikaPython, Release 0.1

28 Chapter 2. Get Start

PikaPython, Release 0.1

2.2.2 The source of the project

The transplanted bare metal MCU project is in the pikascript/bsp directory, and each folder in it is a transplanted bare
metal project.

Each project is independent and can be copied out of the pikascript repository for separate use.

(simulation-keil-dev and pico-dev are not listed. These two bsp can only be used in the warehouse and are used to
develop the kernel.)

https://github.com/pikastech/pikascript/tree/master/bsp

2.2.3 Support list

In the README.md in the bsp folder, the current platform support and the usage of bsp are marked.

(The table below is not up-to-date)

Click here for the latest form

2.2. Use BSP project 29

https://github.com/pikastech/pikascript/tree/master/bsp
https://github.com/pikastech/pikascript#mcu-support

PikaPython, Release 0.1

30 Chapter 2. Get Start

PikaPython, Release 0.1

You can help PikaPython extend this table by contributing driver modules or bsp, please refer to the New Platform
Porting Guide, Module Development and Package Management in the documentation for details.

2.2.4 Projcet structure

Taking CH32V103 as an example, a PikaPython project includes the following parts.

2.2. Use BSP project 31

PikaPython, Release 0.1

1. The first is the part of the BSP folder except the PikaPython folder. This part is the real BSP, including the basic
peripheral library provided by the manufacturer, CMSIS and other common libraries on some platforms. You
can get it sorted.

2. The above part is the launcher of PikaPython, including the main.c entry file, the pika_config.c configuration
file, and the *.s assembly startup file. The launcher is responsible for supporting printf, stack settings, the startup
of PikaPython, as well as some functions such as interactive operation, serial port download of Python, etc.

pika_config.c is used to support some advanced functions such as downloading Python through serial port.
PikaPython can still run without this file.

1. The above is the main part of PikaPython, which is divided into two parts: the kernel and the module. The kernel
is the file in pikascript/src. You can choose a version and add it to compile. No modification is required.

2. Module part can be developed by yourself, or pulled from the warehouse, PikaStdLib standard library module is
required. Other modules are optional.

For how to use modules and how to make modules, please refer to the Module Development section, and for how to
contribute modules to the PikaPython reference, please refer to the How to contribute PikaPython modules section.

1. The top layer is the Python script that the PikaPython project can support. The Python script can be directly
interpreted and run. There are various ways to load the script, including pre-compiled into firmware, inter-
active operation, serial port download of Python scripts, etc., pre-compiled For firmware, please refer to the
Module Development section, and for interactive operation and serial port download, please refer to the New
Platform Porting section.

Only modules imported in main.py will be compiled into the firmware, so main.py can also play the role of trimming
modules.

2.2.5 module management

Launchers, kernels and modules can all be managed using the package manager.

Therefore, the PikaPython folder in the BSP only contains the package manager pikaPackage.exe itself, the request-
ment.txt module description file and the main.py sample script three files.

requestment.txt uses the same module description syntax as general python. Running pikaPackage.exe directly can
identify requestment.txt in the current folder and pull the corresponding module.

Taking requestment.txt in the bsp of stm32g030 as an example, the pulled modules are:

• Kernel: pikascript-core

• Standard library: PikaStdLib

• Peripheral module: STM32G0 PikaPiZero PikaStdDevice

pikascript-core==v1.10.0
PikaStdLib
PikaStdDevice==v1.6.0
STM32G0==v1.2.0
PikaPiZero==v1.1.3

The pulled module needs to be precompiled, just run rust-msc-latest-win10.exe directly.

32 Chapter 2. Get Start

PikaPython, Release 0.1

2.2.6 Precautions

1. Keil version strongly recommended not lower than 5.36

2.2. Use BSP project 33

PikaPython, Release 0.1

2.3 Start with RT-Thread package

PikaPython has been added to the RT-Thread package. Under the programming language category, you can quickly
use PikaPython by directly adding packages.

The PikaPython package supports full RT-Thread BSP.
If you encounter compatibility problems during use, you can file an issue at github or Forum to ask questions.

2.3.1 Install

Import the pikascript package

34 Chapter 2. Get Start

https://packages.rt-thread.org/detail.html?package=pikascript
https://github.com/pikasTech/pikascript
https://whycan.com/f_55.html

PikaPython, Release 0.1

2.3. Start with RT-Thread package 35

PikaPython, Release 0.1

Add RT_WEAK before rt_vsnprintf in rt-thread/src/kservice.c (only for rt_thread version 4.1.0 and below)

Delete the static (only for rt_thread version 4.1.0 and below) of finsh_getchar in rt-thread/components/finsh/shell.c

2.3.2 start pikascript

Option 1: Start with msh (default mode)

Use the pikaRTThread module in packages/pikascript-latest/requestment.txt (included by default).

The latest default requestment.txt can be viewed here.

Type “pika” in msh to start PikaPython in a thread.

The initial startup will execute the /pikascript-latest/main.py initialization script. After execution, enter pika interactive
running mode, Enter “exit()” to return to msh, enter “pika” again to enter pikascript, and enter directly into interactive
mode.

36 Chapter 2. Get Start

https://github.com/pikastech/pikascript/blob/master/port/rt-thread/requestment.txt

PikaPython, Release 0.1

Option 2: Automatically start at boot

Enter the package detailed configuration

Check Enable auto-running PikaPython

2.3. Start with RT-Thread package 37

PikaPython, Release 0.1

3 After setting, it will automatically start PikaPython, run the main.py script, and then go back to msh

Enter pika in msh to run interactively.

Option 3: Manual start

If you need custom start, you can use the following methods to start manually.

Import header file:

#include "pikaScript.h"

Start PikaPython:

PikaObj * pikaMain = pikaScriptInit();

run interactively

Refer to the Support Interactive Run section of the documentation.

Serial download Python script

Refer to the Support Serial Port Download Python part of the document.

38 Chapter 2. Get Start

PikaPython, Release 0.1

Using the PikaPython module and package manager

Modify pikascript-latest/requestment.txt, then right-click the project, Sconscripts Update, you can install the mod-
ule/modify the module version, and precompile.

2.3. Start with RT-Thread package 39

PikaPython, Release 0.1

40 Chapter 2. Get Start

PikaPython, Release 0.1

For more usage, please refer to the package manager, module usage, module development part of the documentation.

2.4 Start with CMSIS-PACK

Users developing with Keil can use CMSIS-PACK to install PikaPython with one click.

2.4.1 Install PikaTech.PikaPython.x.x.x.pack

Click to download

Just go all the way to Next and install

2.4.2 Set in the project

Check PikaPython, including Core and PikaStdLib

2.4. Start with CMSIS-PACK 41

https://gitee.com/Lyon1998/pikascript/attach_files/1191795/download

PikaPython, Release 0.1

Here you can see that PikaPython has been added

42 Chapter 2. Get Start

PikaPython, Release 0.1

In Before Build add

.\RTE\PikaPython\pikaBeforBuild-keil.bat

Then introduce in main.c

#include "pikaScript.h"

Start PikaPython after initializing the system and printf

PikaObj *pikaMain = pikaScriptInit();

Compile successfully.

2.4. Start with CMSIS-PACK 43

PikaPython, Release 0.1

Run successfully !

For more usage, please refer to porting guide

2.5 Start with the Docker Development Environment

2.5.1 Why use docker development environment

PikaPython’s kernel and standard libraries are developed in a docker environment, which can be prone to some hard-
to-debug problems when developing features that involve the kernel internals, such as

• memory leaks

• memory overruns

• broken kernel functionality

This problem can be avoided by using PikaPython’s docker development environment, which has been installed with
unit testing framework and memory checking tool, so that if there is a memory security problem, it can be quickly
found and solved to avoid memory hazards.

PikaPython’s linux development platform also needs to install go, rust, GoogleTest, GoogleBenchmark, valgrind and
other tools, which is rather cumbersome, Docker-based development environment can install these tools in one click,
and ensure that all developers’ development environment is consistent.

44 Chapter 2. Get Start

index_porting.html

PikaPython, Release 0.1

2.5.2 Build Docker container

Please make sure you have installed Docker on the host:

• Install Docker directly on Linux platform

• Install Docker-Desktop on Windows platform

– Docker-Desktop requires the installation of wsl2

(For windows platform, you can use the following command in wsl, not PowerShell)

step1: Clone the repository

git clone https://github.com/pikastech/pikascript
cd pikascript/docker

step2: Build the Docker image, then start the container

bash build.sh
sh run.sh

step3: Initialize the port/linux

cd port/linux
sh pull-core.sh
sh init.sh

step4: Run GoogleTest, BenchMark, and valgrind

sh gtest.sh
sh ci_benchmark.sh
sh valgrind.sh

step5: Run REPL

sh run.sh

For more development guidelines under Docker, please refer to Development Process for Standard Libraries .

2.6 Start with the LVGL GUI Simulation Project

The LVGL GUI Simulation Project provides an experimental environment for co-simulation of PikaPython and LVGL.

The GUI simulation can be performed on a PC using Visual Studio.

2.6. Start with the LVGL GUI Simulation Project 45

contribute_to_stdlib.html

PikaPython, Release 0.1

2.6.1 Get the project

http://pikascript.com/

Select lvgl-vs-simu, a Visual Studio simulation project, from the Project Builder on the official PikaPython website.

This project is branched from the official LVGL Visual Studio simulation project.

Click Generate Project and wait about 1 minute.

Unzip the project and open LVGL.Simulator.sln

46 Chapter 2. Get Start

http://pikascript.com/
https://github.com/lvgl/lv_port_win_visual_studio

PikaPython, Release 0.1

Start compiling and running directly

You can see that the lvgl emulator has been successfully started

2.6. Start with the LVGL GUI Simulation Project 47

PikaPython, Release 0.1

2.6.2 Programming with Python

The Python file for running the project is in LVGL.Simulator/pikascript/main.py, and it is recommended to edit the
Python file with VSCode.

48 Chapter 2. Get Start

PikaPython, Release 0.1

The code in main.py is shown below, and the project will run this main.py when it starts

main.py
import pika_lvgl as lv
import PikaStdLib
mem = PikaStdLib.MemChecker()

Create an Arc
arc = lv.arc(lv.scr_act())
arc.set_end_angle(200)
arc.set_size(150, 150)
arc.center()

print('mem used max: %0.2f kB' % (mem.getMax()))
print('mem used now: %0.2f kB' % (mem.getNow()))

More sample code

You can see more sample code in the /pikascript/examples/lvgl folder.

2.6. Start with the LVGL GUI Simulation Project 49

https://github.com/pikastech/pikascript/tree/master/examples/lvgl

PikaPython, Release 0.1

For example, you can copy lv_callback1.py into main.py.

lv_callback1.py
import pika_lvgl as lv
import PikaStdLib
mem = PikaStdLib.MemChecker()

def event_cb_1(evt):
print('in evt1')
print('mem used now: %0.2f kB' % (mem.getNow()))

def event_cb_2(evt):
print('in evt2')
print('mem used now: %0.2f kB' % (mem.getNow()))

btn1 = lv.btn(lv.scr_act())
btn1.align(lv.ALIGN.TOP_MID, 0, 10)
btn2 = lv.btn(lv.scr_act())
btn2.align(lv.ALIGN.TOP_MID, 0, 50)
btn1.add_event_cb(event_cb_1, lv.EVENT.CLICKED, 0)
btn2.add_event_cb(event_cb_2, lv.EVENT.CLICKED, 0)

print('mem used max: %0.2f kB' % (mem.getMax()))
print('mem used now: %0.2f kB' % (mem.getNow()))

50 Chapter 2. Get Start

PikaPython, Release 0.1

After replacing main.py, run PikaPython’s pre-compiler

and then start running

2.6. Start with the LVGL GUI Simulation Project 51

PikaPython, Release 0.1

In this example you can click the button and then view the output.

52 Chapter 2. Get Start

PikaPython, Release 0.1

2.6.3 Frequently Asked Questions

If you are prompted for missing functions, you need to manually add the files to be compiled

Right-click on pikascript/pikascript-api and pikascript/pikascript-lib and click “Include in project”, then recompile.

2.7 Play Python on Raspberry Pi Pico in MDK

It is well known that MicroPython supports the Raspberry Pi Pico, and we see there some room to improve, not only
about the memory footprint, but also about the way to bind your own c modules. It’s not rare to see people in the
community complain about the complexity and debugging experience.

The resources and price of the Raspberry Pi Pico are really good, it is fun to play with, not to mention there is a big
community behind it. One question for most of the MCU developer is that can we use MDK to develop Raspberry Pi
Pico and play with PikaPython? Why not? Thanks to a open-source project called Pico_Template, dream becomes
reality. Please note that Pico_Template allows you to compile the latest pico-sdk using the Arm Compiler 6, debug
without an extra pico and retarget printf to MDK without using any Serial2USB adapter.

For details, see:

2.7. Play Python on Raspberry Pi Pico in MDK 53

https://github.com/GorgonMeducer/Pico_Template

PikaPython, Release 0.1

I’m going to use MDK to develop Raspberry Pi Pico, how come!

As we mentioned before, binding C modules in MicroPython is very complicated and difficult to debug. Is there a more
convenient way to do it for python running on MCUs?

YES! Our answer to this question is PikaPython. PikaPython is a completely rewritten ultra-lightweight python vitual
machine, with zero dependency on toolchain, simple configuration, ultra-low memory footprint (i.e. you can use it with
less than 4KB of SRAM). Using framework based C module development tools, your API calling written in Python can
be automatically connect to the your C modules. Cannot be more simple or convenient, isn’t it? No need to manually
handle any global tables, macro functions, module registration, etc.

PikaPython provides MDK projects, hence you can debug C modules with python scripts.

For details, see: I’m going to use the cheapest single-chip microcomputer to run python, and I also need to use MDK
to develop it, what’s the matter

In addition to pico, the portability of pikascript allows you to use it on a wide variety of platforms. For example:
stm32g0, stm32f1, ch32, apm32, cm32, as well as Pingtou’s w801, Boliu’s bl-706. . .

The very popular ESP32C3, Godson architecture.

PikaPython supports both bare-metal but also RTOS enviroment, for example RT-Thread, VSF, and Linux.

In fact, PikaPython is deeply integrated with rt-thread, it supports rt-thread full series of BSP via software packages.

Let’s see how to play PikaPython on Raspberry Pi pico using MDK:

https://github.com/pikastech/pikascript/tree/master/bsp/pico#pikascript-in-pico

If you can see the following information (or similar) on the Debug(printf) View, congrats!

Enjoy!

For getting technical support, please raise issues on github. Thank you.

2.8 ARM-2D based GUI simulation project

2.8.1 Preface

good news! The Arm2D module and simulation project of pikascript are preliminarily sorted out! pikaScript, ARM-
2D, rt-thread work together, unlock new poses for python to play Arm2D! No hardware is needed, and it can be simulated
directly, which is very convenient.

It is also very simple to deploy and run this simulation project on your own computer, just follow the steps below~

54 Chapter 2. Get Start

Http://mp.weixin.qq.com/s?__biz=MzAxMzc2ODMzNg==&mid=2656103324&idx=1&sn=f1d3ece87c81eeaa7d402f3cba60dc8f&chksm=8039c863b74e4175edc806b4e329c25e75b6372df53f07565bd9a46cfbf13a3c4cd9e20c08cc#rd
Http://mp.weixin.qq.com/s?__biz=MzU4NzUzMDc1OA==&mid=2247484313&idx=1&sn=2749a27bba09b2fe9c7bc0ad4977c8a6&chksm=fdebd4f0ca9c5de6f9160d42c58aa5d5e072168752c826cbf82f700f1fc301b96a3aaf4cfcfd#rd
Http://mp.weixin.qq.com/s?__biz=MzU4NzUzMDc1OA==&mid=2247484313&idx=1&sn=2749a27bba09b2fe9c7bc0ad4977c8a6&chksm=fdebd4f0ca9c5de6f9160d42c58aa5d5e072168752c826cbf82f700f1fc301b96a3aaf4cfcfd#rd
https://github.com/RT-Thread/rt-thread
https://github.com/vsfteam/vsf
https://github.com/pikastech/pikascript/tree/master/bsp/pico#pikascript-in-pico

PikaPython, Release 0.1

2.8.2 Get the simulation project

Go to the PikaPython official website: http://pikascript.com, then select sumulation-rtt-qemu-arm2d for the plat-
form, and then click Start to generate the project.

2.8.3 Install the development environment

After you have the project, you also need to install the development environment. There are only two things that need to
be installed. One is rt-thread studio, which is used as an IDE. rt-thread studio integrates qemu, which is very convenient
for simulating mcu and gui. The other is the latest arm gcc toolchain.

rt-thread studio installation package link

https://download-sh-cmcc.rt-thread.org:9151/www/studio/download/RT-Thread Studio-v2.1.2-setup-
x86_64_20210831-1200.exe

arm gcc installation package link

https://developer.arm.com/-/media/Files/downloads/gnu-rm/10.3-2021.10/gcc-arm-none-eabi-10.3-2021.10-win32.
exe

You can install rt-thread studio where you like, arm gcc should be installed on the default c drive.

Once installed, you can start playing arm-2d with python.

2.8.4 run

We open RT-Thread Studio and click Import

2.8. ARM-2D based GUI simulation project 55

https://download-sh-cmcc.rt-thread.org:9151/www/studio/download/RT-Thread%20Studio-v2.1.2-setup-x86_64_20210831-1200.exe
https://download-sh-cmcc.rt-thread.org:9151/www/studio/download/RT-Thread%20Studio-v2.1.2-setup-x86_64_20210831-1200.exe
https://developer.arm.com/-/media/Files/downloads/gnu-rm/10.3-2021.10/gcc-arm-none-eabi-10.3-2021.10-win32.exe
https://developer.arm.com/-/media/Files/downloads/gnu-rm/10.3-2021.10/gcc-arm-none-eabi-10.3-2021.10-win32.exe

PikaPython, Release 0.1

Then select the simulation-rtt-qemu-arm2d folder

56 Chapter 2. Get Start

PikaPython, Release 0.1

2.8. ARM-2D based GUI simulation project 57

PikaPython, Release 0.1

Select the project, then click the hammer to compile, and then click the bug to enter the simulation

A QEMU box will pop up, then click Run.

58 Chapter 2. Get Start

PikaPython, Release 0.1

If the operation is successful, you can see a small blue square on the white background. So far the deployment has been
successful.

2.8. ARM-2D based GUI simulation project 59

PikaPython, Release 0.1

2.8.5 Modify the python code and try

The source code of python is in simulation-rtt-qemu-arm2d/packages/pikascript/main.py, you can open it and see~

60 Chapter 2. Get Start

PikaPython, Release 0.1

The following is the content of main.py, create a new box object, and then set the color and position, you can try to
change the color to ‘white’ or change the coordinates to see, you can also create another screen.elems.b2 try .

import PikaStdLib
import Arm2D

mem = PikaStdLib.MemChecker()

win = Arm2D.Window()
win.init()
win.background.setColor('white')

win.elems.b1 = Arm2D.Box()
win.elems.b1.init()
win.elems.b1.setColor('blue')
win.elems.b1.move(100, 100)
i = 0
x0 = 100
y0 = 100
sizeX0 = 50
sizeY0 = 50
alpha0 = 180
isIncrace = 1
loopTimes = 0

print('hello pikaScript')
print('mem used max:')
mem.max()

(continues on next page)

2.8. ARM-2D based GUI simulation project 61

PikaPython, Release 0.1

(continued from previous page)

print('mem used now:')
mem.now()
while True:

win.elems.b1.move(x0 + i * 2, y0 + i * 1)
win.elems.b1.setAlpha(alpha0 - i * 1)
win.elems.b1.setSize(sizeX0 + i * 2, sizeY0 + i * 1)
win.update()
if isIncrace > 0:

i = i + 1
if i > 160:

isIncrace = 0
if isIncrace < 1:

i = i - 1
if i < 0:

isIncrace = 1
loopTimes = loopTimes + 1

Remember to precompile after each modification to convert python to .c file in the project

Then compile again, enter the simulation, and you can see the effect. This time I changed the square to red.

62 Chapter 2. Get Start

PikaPython, Release 0.1

2.8.6 Conclusion

This is the Arm-2D warehouse~ Students who haven’t starred remember to add a star~

https://github.com/ARM-software/Arm-2D

Thanks to liuduanfei for the rtt-Arm2d-qemu simulation project~ Here is the github homepage of liuduanfei

2.8. ARM-2D based GUI simulation project 63

https://github.com/ARM-software/Arm-2D

PikaPython, Release 0.1

https://github.com/liuduanfei

64 Chapter 2. Get Start

https://github.com/liuduanfei

CHAPTER

THREE

DEVELOPMENT BOARD

3.1 Pika Pie Development Board Quick Start

Today, we will not talk about the hard-core content of driver development and architectural principles. We will sim-
ply use the Pika Pie development board to play Python programming! Light up a “Life is too short, I use Python”
achievement on the microcontroller!

Video link

3.1.1 Development board acquisition

If you don’t have a Pika Pie development board yet, you can buy it from the link below:

https://item.taobao.com/item.htm?spm=a21dvs.23580594.0.0.52de3d0dt7rqAx&ft=t&id=654947372034

The development board looks like this. It has an STM32G0 chip onboard with 4 colorful RGBs and a Type-C interface.

Optional:

• Lite Youth Edition: STM32G030 + CH340 serial port chip 64k flash 8k ram

• Pro version: STM32G030 + DAPLink debugger 64K flash 8k ram

• Plus top version: STM32G070 + DAPLink debugger 128k flash 32k ram

65

https://www.bilibili.com/video/BV1kg411K7W2
https://item.taobao.com/item.htm?spm=a21dvs.23580594.0.0.52de3d0dt7rqAx&ft=t&id=654947372034

PikaPython, Release 0.1

This development board is officially supported by the PikaPython project and continues to be updated continuously.
The latest kernel and latest functions of PikaPython can be experienced on this development board.

This development board has also been officially adapted by the project with a wealth of peripheral modules, including
GPIO, TIME, ADC, IIC, LCD, KEY, PWM and other modules drivers have been developed and can be programmed
directly with python.

3.1.2 Video tutorials

https://space.bilibili.com/5365336/channel/seriesdetail?sid=1034902

66 Chapter 3. Development Board

https://space.bilibili.com/5365336/channel/seriesdetail?sid=1034902

PikaPython, Release 0.1

3.1.3 How to download the Python program for the microcontroller

The download method is very simple, just connect the Type-C data cable.

We use a USB data cable to connect the computer and the Pika Pie development board, and we can download the
program.

When downloading the program, you need to use a serial port assistant tool. We can use the XCOM assistant developed
by Punctual Atom, which can be downloaded from the Punctual Atom forum.

http://www.openedv.com/thread-279749-1-1.html

3.1. Pika Pie Development Board Quick Start 67

http://www.openedv.com/thread-279749-1-1.html

PikaPython, Release 0.1

Select the COM port, then select the baud rate as 115200, and then click to open the serial port. At this time, it is
connected to the Pika Pie. Simply send a Pthon script file to download the Python program to Pika Pie. To verify that
the download was successful, we use the sample Python scripts in the PikaPython source repository.

We enter the code repository of PikaPython

https://github.com/pikastech/pikascript

It is customary to click a Star~

Then we click on the examples folder, which contains the Python routines that can be run.

68 Chapter 3. Development Board

https://github.com/pikastech/pikascript

PikaPython, Release 0.1

Let’s open the GPIO folder and light up the water lamp to see~

3.1. Pika Pie Development Board Quick Start 69

PikaPython, Release 0.1

The main.py in the GPIO folder is the sample code for GPIO

We can open main.py and see~

70 Chapter 3. Development Board

PikaPython, Release 0.1

import PikaStdLib
import machine

mem = PikaStdLib.MemChecker()
io1 = machine.GPIO()
time = machine.Time()

io1.init()
io1.setPin('PA8')
io1.setMode('out')
io1.enable()
io1.low()

print('hello pikascript')
print('mem.max:')
mem.max()
print('mem.now:')
mem.now()

while True:
io1.low()
time.sleep_ms(500)
io1.high()
time.sleep_ms(500)

Without explaining the content inside, let’s download this script directly.

We also create a new main.py file on the desktop, and then copy this code into it.

We choose this main.py file

3.1. Pika Pie Development Board Quick Start 71

PikaPython, Release 0.1

Then click “Send File” to download the script!

We can see the [OK]: Programing ok! prompt, which means the download is successful!

72 Chapter 3. Development Board

PikaPython, Release 0.1

At this time, the LED on the development board will flash!

Congratulations on your achievement of playing Python with a microcontroller!

3.1. Pika Pie Development Board Quick Start 73

PikaPython, Release 0.1

3.1.4 What is written in the GPIO script?

Let’s parse this GPIO routine line by line.

import PikaStdLib
import machine

The first line is the first and second line, which means that two modules are imported, one is the PikaStdLib module
and one is the machine module. PikaStdLib is the standard library of PikaPython, which has some system func-
tions, such as checking the memory usage. In the fourth line, we create a new mem object whose class is PikaSt-
dLib.MemChecker().

mem = PikaStdLib.MemChecker()

This class has a max() method and a now() method. Using these two methods, you can print out the memory size
currently used by PikaPython.

print('hello pikascript')
print('mem.max:')
mem.max()
print('mem.now:')
mem.now()

We can look at the printout of the serial port, we can see that the maximum memory usage is 1.51kB, and the current
memory usage is 0.61kB, is it very small!

screenshot.png

The time object is newly created through the Time() class of machine and can provide basic delay functions.

time = machine.Time()

Through the time.sleep_ms() method, you can delay in milliseconds. For example, the function of the following code
is to delay 500ms.

time.sleep_ms(500)

io1 is our protagonist today. This is a GPIO object, which is newly created with the machine .GPIO() class.

io1 = machine.GPIO()

After creating a new io1 object, we need to initialize this io, init() is used for object initialization, used at the front,
and then setPin(’PA8’) means using the PA8 port setMode(’out’) means using the output mode, And enable() means
to start the hardware of io1, and low() pulls down the level of io1. A led light on the Pika Pie is connected to the PA8.
As long as you control the level of the PA8, you can control the light on and off.

74 Chapter 3. Development Board

PikaPython, Release 0.1

io1.init()
io1.setPin('PA8')
io1.setMode('out')
io1.enable()
io1.low()

In the main loop of the program, switch the high and low levels of io1 to make the LED flash~

while True:
io1.low()
time.sleep_ms(500)
io1.high()
time.sleep_ms(500)

3.1.5 Interpretation of other Python routines

ADC

Let’s interpret other routines in examples, such as this ADC routine, which is to read the analog voltage value on the
PA1 pin, and then print it out~

import PikaStdLib
import machine

time = machine.Time()
adc1 = machine.ADC() #Create a new ADC object

adc1.init() #Initialize ADC object
adc1.setPin('PA1') #Set the pin
adc1.enable() #Start the hardware

while True:
val = adc1.read() #Read the value of ADC once and store it in the val variable
print('adc1 value:') #Print what is read
print(val)
time.sleep_ms(500) #Wait for 0.5s

UART

The following is the routine of the serial port, the function is to read the received two bytes, and then print them out

import PikaStdLib
import machine

time = machine.Time()
uart = machine.UART() #Create a new serial port object
uart.init()
uart.setId(1) #Set the serial port number, use serial port 1
uart.setBaudRate(115200) #Set the baud rate

(continues on next page)

3.1. Pika Pie Development Board Quick Start 75

PikaPython, Release 0.1

(continued from previous page)

uart.enable() #Start hardware

while True:
time.sleep_ms(500)
readBuff = uart.read(2) #read two characters
print('read 2 char:')
print(readBuff) # print out

PWM

The following is the PWM routine, you can specify the pin to output the PWM wave, you can set the frequency and
duty cycle

import PikaStdLib
import machine

time = machine.Time()
pwm = machine.PWM()
pwm.setPin('PA8') #Set PWM output pin
pwm.setFrequency(2000) #Set the frequency
pwm.setDuty(0.5) #Set the duty cycle to 50%
pwm.enable()

while True:
time.sleep_ms(500)
pwm.setDuty(0.5)
time.sleep_ms(500)
pwm.setDuty(0.001) #Set the duty cycle to 0.1%

RGB

Then the following is the RGB routine~

import machine

import PikaStdLib

time = machine.Time()
adc = machine.ADC()
pin = machine.GPIO()
pwm = machine.PWM()
uart = machine.UART()
rgb = machine.RGB() #Create a new RGB object
mem = PikaStdLib.MemChecker()

rgb.init() #Initialize the object
rgb.enable() #Start hardware

print('hello 2')
print('mem used max:')

(continues on next page)

76 Chapter 3. Development Board

PikaPython, Release 0.1

(continued from previous page)

mem.max()

while True:
print('flowing')
rgb.flow() #RGB water light flow

This routine can drive the onboard 4 RGB water lights~

3.1. Pika Pie Development Board Quick Start 77

PikaPython, Release 0.1

LCD

There is also an LCD routine that can display a small square on the LCD, and you can use the four onboard buttons to
control the movement of the small square~

from PikaObj import *
import PikaStdLib

import machine

lcd = machine.LCD()
lcd.init()
lcd.clear('white') #Initialize LCD background fill with white
mem = PikaStdLib.MemChecker()
key = machine.KEY() #Create a new key object and get the onboard key input
key.init()
time = machine.Time()
h = 10
w = 10
x = 10
y = 10 # used to represent the height, width and coordinates of the small square
x_last = x
y_last = y #Record the last position for erasing
is_update = 0 #Control the flag variable that refreshes the screen
print('mem used max:')
mem.max()
lcd.fill(x, y, w, h, 'blue') # draw small blue squares
while True:

key_val = key.get() # get the value of the key
if key_val != -1:

(continues on next page)

78 Chapter 3. Development Board

PikaPython, Release 0.1

(continued from previous page)

x_last = x
y_last = y
is_update = 1 #Start refresh

if key_val == 0:
x = x + 5 #change the coordinates of the small square

if key_val == 1:
y = y - 5

if key_val == 2:
y = y + 5

if key_val == 3:
x = x - 5

if is_update: #Refresh the screen
is_update = 0
lcd.fill(x_last, y_last, w, h, 'white') #Erase the previous position
lcd.fill(x, y, w, h, 'blue') # draw a new position

When you are familiar with the LCD driver, you can try to develop your own mini-games~

3.1.6 run interactively

After main.py is executed, it will enter the interactive operation, so as long as the while True : in
main.py is canceled, so that it can complete the execution and exit, you can enter the interactive operation.

Interactive execution supports single-line and multi-line input, consistent with general Python usage. It is recommended
to use PuTTY serial terminal. Entering exit() will directly restart the system. Precautions:

1. The firmware version needs to be no less than **v1.3.2. **

2. If using the PuTTY terminal does not work, use XCOM.

3. All English input methods should be used in the terminal.

3.1. Pika Pie Development Board Quick Start 79

PikaPython, Release 0.1

4. Indent should use 4 spaces, do not use the TAB key.

3.1.7 LCD screen installation

1. Refer to the figure below to solder the long pin headers

1. Plug in the screen, refer to the direction of the green flag, if the screen can be lit, it means that the direction of
the plug is correct, if it is plugged in reversely, it will not light up.

80 Chapter 3. Development Board

PikaPython, Release 0.1

3.1.8 Firmware upgrade

The firmware of Pika Pie is updated on a rolling basis, and new firmware versions will be released continuously to
provide new functions, and some new functions can only be played by upgrading the firmware, so it is also very
important to learn to upgrade the firmware~

Compile the firmware yourself

The firmware is a Keil project and compilation is very simple. Download the firmware
project: Enter pikascript official website http://pikascript.com The Lite and Pro versions use
the stm32g030 platform. The Plus version uses the stm32g070 platform. Then click “Start
Generation”. (The default module will be automatically selected after selecting the platform)

3.1. Pika Pie Development Board Quick Start 81

http://pikascript.com

PikaPython, Release 0.1

Just open the Keil project and compile it. When compiling, you need to use Keil not lower than V5.36, which needs

82 Chapter 3. Development Board

PikaPython, Release 0.1

to be activated.

The compiled .bin is in MDK/stm32g030c8/stm32g030c8.bin .

Download the compiled firmware directly

If you want to use the ready-made firmware, you can also download the compiled one directly~

Click to download to get the latest firmware~

3.1. Pika Pie Development Board Quick Start 83

PikaPython, Release 0.1

Serial Bootloader upgrade

To upgrade the firmware, you can also use the serial port. When upgrading, you need to use the firmware compiled by
yourself or the .bin firmware you downloaded directly. Currently, the versions that support serial bootloader upgrade
are:

• Lite Youth Edition

• Pro Professional Edition

Next, we need to let the pika pie enter the upgrade mode. We press and hold the SW0 key on the development board
and press the RST key at the same time to enter the upgrade mode.

In the upgrade mode, we can see the prompt information of the serial port

84 Chapter 3. Development Board

PikaPython, Release 0.1

Then we use the serial port assistant to select the stm32g030c8.bin file just downloaded and send it through the serial
port. After the firmware is recognized, Reciving. . . .

After sending, press the RST key to restart, and the upgrade is complete! If it can be started normally, then the upgrade
is successful.

Upgrade using SWD

The Lite version can connect to J-Link \ DAP-Link \ ST-Link to upgrade SWD. The Pro version and
Plus version have onboard DAP-Link, which can be upgraded by SWD directly by connecting to USB.
The Lite and Pro versions use the bsp/stm32g030 project. The Plus version uses the bsp/stm32g070
project. When using SWD to upgrade, the download method of “Partial Erase” should be selected

3.1. Pika Pie Development Board Quick Start 85

https://github.com/pikastech/pikascript/tree/master/bsp/stm32g030c8
https://github.com/pikastech/pikascript/tree/master/bsp/stm32g070cb

PikaPython, Release 0.1

86 Chapter 3. Development Board

PikaPython, Release 0.1

Download Python program using firmware

The firmware loads pikascript/main.py as the default Python program when compiled. Before downloading the
firmware, after pressing SW0 + RST to erase the flash, it will boot from the firmware Python program.

3.1.9 ARM-2D GUI engine

pika pie supports running ARM-2D GUI engine

3.1. Pika Pie Development Board Quick Start 87

PikaPython, Release 0.1

88 Chapter 3. Development Board

PikaPython, Release 0.1

Instructions:

1. Obtain the bsp/stm32g030 project.

2. Use the project files in examples/ARM-2D/PikaPiZero, replace main.py and requestment.txt.

1. Press and hold the SW0 key on the development board and press the RST key at the same time to erase the flash.

2. Re-run the package manager, precompile, compile the project, and flash the project using SWD/Bootloader.

3.1.10 common problem

1 Press sw0 + rst to enter the upgrade mode: The first batch of boards shipped did not have the bootloader. You need to
manually flash it once. Use jlink / stlink / DAPlink, etc., and flash into pikascript/bsp/pikapizero/bootloader. 2 Cannot
enter the bootloader / Suspected to be stuck and unable to run: Check the serial port assistant, you cannot use dtr /
rts control, it is recommended to use the xcom assistant of punctual atom. 3 Download python script stuck: When
downloading the python program for the first time, do not download the LCD program, first download a gpio program,
and then download the LCD program. In other cases, the download is stuck, and you can restart the download again. If
it still doesn’t work, re-flash the firmware and download it again. 4 Project compilation error, missing files: The project
needs to pull modules and precompile remotely. You need to run pikascript/pikaPackage.exe and pikascript/rust-msc-
win10-latest.exe before compiling the project.

3.1.11 Schematic

3.1. Pika Pie Development Board Quick Start 89

PikaPython, Release 0.1

Lite Youth Edition

90 Chapter 3. Development Board

PikaPython, Release 0.1

3.1. Pika Pie Development Board Quick Start 91

PikaPython, Release 0.1

Pro Professional Edition

92 Chapter 3. Development Board

PikaPython, Release 0.1

3.1. Pika Pie Development Board Quick Start 93

PikaPython, Release 0.1

Plus top version

94 Chapter 3. Development Board

PikaPython, Release 0.1

LCD

3.1. Pika Pie Development Board Quick Start 95

PikaPython, Release 0.1

96 Chapter 3. Development Board

CHAPTER

FOUR

PORTING

4.1 Deploy to new platform in ten minutes

4.1.1 How to choose a platform that can run pikascript

• PikaPython can run on all bare metal and operating systems that support libc.

• The compiler needs to be able to support the C99 standard.

• Supports 32bit/64bit kernel, does not support 8bit kernel.

• resource occupancy

– If it is an arm kernel, considering the resource consumption of the expansion module, it should be equipped
with a minimum of 64k flash and 8k ram.

– If it is a risc-v kernel, you need 128k flash and 8k ram , because of the gcc optimization of the risc-v
kernel and the problem of code density, the code size is much larger than that of the arm kernel.

– If it is other kernel, you can refer to the configuration requirements of risc-v.

• If it is a PC/server platform, linux/windows can be used.

4.1.2 Deployment operation process

In this document, we will describe how to deploy PikaPython for new platforms.

PikaPython has almost no global variables and macros, and only depends on the standard library, so it is very easy to
deploy PikaPython for new platforms.

Here are the specific steps to deploy PikaPython

Prepare template project

Your template project just needs to include a serial port initialization that supports printf, and then you can happily
use pikascript.

The usual script interpreters rely on the operating system and file system, and pikascript does not need these, if you
have deployed other scripting engines, you will find that PikaScrip has real super Lightweight features.

97

PikaPython, Release 0.1

Get PikaPython source code and toolset

To get PikaScsript, you can use the pika package manager (option 1), or use the project generator on the official website
(option 2).

Option 2 is an automated version of Option 1. It is recommended that newbies use Option 1 when deploying for the
first time to familiarize themselves with the package manager.

Download PikaPython Package Manager

PikaPython package manager can help you pull all source code and tools needed by pikascript, and provide version
selection function, which is convenient for you to switch versions.

And the PikaPython package manager uses gitee source, which can be used smoothly in the mainland, does not require
scientific Internet access.

Enter the PikaPython main repository

https://github.com/pikastech/pikascript

or:

https://gitee.com/lyon1998/pikascript

Download the PikaPython package manager PikaPackage.exe

Then open the project you want to deploy, create a new pikascript folder in the root directory of the project, and copy
PikaPackage.exe into it.

98 Chapter 4. Porting

https://github.com/pikastech/pikascript
https://gitee.com/lyon1998/pikascript

PikaPython, Release 0.1

Pull source code

Next, with the help of PikaPackage.exe, we can easily pull the source code and modules of the specified version.

Pull the source code and modules through a requestment.txt file.

If you are familiar with python’s pip package manager, you will find that the requestment.txt file format of pikascript
is the same as that of pip.

Create a new requestment.txt file in the pikascript folder of the project, and write the following content.

pikascript-core
PikaStdLib

The requestment.txt file indicates the installation of the pikascript-core interpreter kernel and the PikaStdLib
standard library. The interpreter kernel and the standard library are mandatory, while the other modules can be added
optionally, and only the kernel and the standard library should be added during the initial deployment to avoid com-
patibility issues.

You can copy the requestment.txt kernel and standard library version of stm32g070, which is an officially supported
development board The version used by Pika Pie-Zero.

And all optional versions can be viewed in the packages.toml file.

The lts2021 version refers to the long-term support version released at the end of 2021, and the support period is within
2022.

The usual version number is v1.x.x, the lts2021 version is based on v1.3.5 with stability patches.

The pikascript folder now has two files, pikaPackage.exe and requestment.txt. Double-click to run pikaPackage.exe,
and the source code and modules specified in requestmemt.txt will be pulled down.

The pulled files are shown in the figure below, pikascript-core is the kernel source code, pikascript-lib is the module
library, pikascript-api is the module API, and rust-msc-latest-win10.exe is the dedicated precompiler for pikascript.

4.1. Deploy to new platform in ten minutes 99

https://github.com/pikastech/pikascript/blob/master/bsp/stm32g070cb/pikascript/requestment.txt
https://item.taobao.com/item.htm?spm=a1z10.3-c.w4023-23991764790.10.16f97c58fsLjVk&id=654947372034
https://github.com/pikastech/pikascript/blob/master/packages.toml

PikaPython, Release 0.1

After installation, the package manager will automatically lock the version and the requirement.txt will look like this

pikascript-core==v1.11.0
PikaStdLib==v1.11.0

If you want to upgrade the version, modify the version number in requestment.txt and run pikaPackage.exe again, the
original version will be overwritten.

After pulling the source code, the next step is to write the python script that pikascript runs.

We create a new main.py file in the pikascript folder.

Then write:

import PikaStdLib

print('hello PikaPython!')

Among them, import PikaStdLib means importing the standard library.

The standard library must be imported, even if it is not used directly, and print('hello PikaPython!') is used to
test whether pikascript is started normally.

Precompile modules

Next, run rust-msc-latest-win10.exe to precompile main.py and imported modules into pikascript api files.

The precompiled files are in the pikascript-api folder.

100 Chapter 4. Porting

PikaPython, Release 0.1

We open the pikascript-api folder and find that there are some .c and .h files in it, which means that the precompile is
successful.

The pikascript precompiler can precompile C modules into .c and .h files.

Add source code

Create three new groups in Project, it is recommended to name them pikascript-core, pikascript-api and pikascript-lib

Then add all the .c files in the three subfolders of the pikascript folder (including the subfolder in pikascript-lib) to the
keil project (the actual number of .c files may not match the screenshot, just add them all.)

4.1. Deploy to new platform in ten minutes 101

PikaPython, Release 0.1

Then add include paths for pikascript-core and pikascript-api folders.

102 Chapter 4. Porting

PikaPython, Release 0.1

4.1. Deploy to new platform in ten minutes 103

PikaPython, Release 0.1

Adjust stack

Open the project’s startup file, in stm32, this is a startup_stm32xxxx.s file, and on other platforms, you have to figure
out how to adjust the stack yourself.

It is recommended to allocate 4K stack space and 16K heap space, and at least 1K stack space and 4K heap space need
to be allocated

4K stack space corresponds to 0x1000, 16K heap space corresponds to 0x4000, as shown in the following figure

104 Chapter 4. Porting

PikaPython, Release 0.1

Start PikaPython

Add the startup code of PikaPython in the initialization code of main.c.

• add header files

add in header file

#include "pikascript.h"

• initialize pikaScript and get the pointer to the pikascript main object pikaMain

Add a startup code to the main function

PikaObj* pikaMain = pikaScriptInit();

ended? Yes, it’s over, it’s that simple, isn’t it amazing.

This is because the precompiler does a lot of auxiliary work behind the scenes, including the automatic generation of
the pikaScriptInit() function.

4.1. Deploy to new platform in ten minutes 105

PikaPython, Release 0.1

compile source code

When compiling the source code, you need to check the C99 standard, and the compilation optimization level can be
selected arbitrarily, and pikascript supports it.

Then you can compile it directly. Generally speaking, it can be passed directly.

You can use compiler version 5 or compiler version 6.

Contribute BSP

We sincerely appreciate your contribution, by contributing code, you can help PikaPython run on more platforms, and
more developers will benefit from you.

Please see the operation method:

• How to contribute to PikaPython BSP

106 Chapter 4. Porting

PikaPython, Release 0.1

Add peripheral support

PikaPython manages peripherals through packages. To add peripheral support to the platform, please refer to the
following documents:

• PikaPython Module Overview

• PikaPython Extension Module Development

• PikaPython Standard Device

• How to contribute PikaPython modules

4.2 Interactive Run

PikaPython supports reading strings directly to run Python scripts, so to support interactive operation, you only need
to make a serial port receiving driver.

4.2.1 Option 1: Read and run by byte (recommended)

Implement a blocking byte read function

Interactive operation requires a low-level interface __platform_getchar() to read user input bytes. This interface
is a weak function. Users need to implement a __platform_getchar() in their own code. to override this weak
function. The weak function prototype is in PikaPlatform.c. If the user does not override it, an error will be reported
when using the interactive runtime.

/* PikaPlatform.c */
PIKA_WEAK char __platform_getchar(void) {

__platform_printf("[error]: __platform_getchar need impaltment!\r\n");
while(1){
}

}

Users can directly implement a __platform_getchar() in the main.c of the project. If the platform itself supports
getchar(), you can directly access the platform’s getchar().

/* main.c */
char __platform_getchar(){

return getchar();
}

If the platform does not support it, you need to implement it yourself, pay attention to implement a blocking
getchar(), that is, when there is no serial input character, you need to use __platform_getchar() waits, and
returns a character if there is input. E.g:

/* main.c */
char __platform_getchar(){

char res = 0;
while(rx_char == 0){
};
res = rx_char;
rx_char = 0;

(continues on next page)

4.2. Interactive Run 107

PikaPython%20%E6%A8%A1%E5%9D%97%E6%A6%82%E8%BF%B0.html
Pikascript%20%E6%8B%93%E5%B1%95%E6%A8%A1%E5%9D%97%E5%BC%80%E5%8F%91%E6%B5%81%E7%A8%8B.html
PikaStdDevice%20%E6%A0%87%E5%87%86%E8%AE%BE%E5%A4%87.html

PikaPython, Release 0.1

(continued from previous page)

return res;
}

Start PikaPython Shell and run pikaScriptShell() directly to start interactive operation.

pikaScriptShell() The entry parameter is the root object of pika, and running pikaScriptInit() will create a
root object.

pikaScriptShell(pikaScriptInit());

Sample code

stm32g070cb: https://github.com/pikastech/pikascript/blob/master/bsp/stm32g070cb/Booter/main.c

rt-thread: https://github.com/pikastech/pikascript/blob/master/package/pikaRTThread/rt_pika.c

Precautions:

• Kernel version needs to be at least v1.3.0

• It is strongly recommended to use putty as a serial terminal.

108 Chapter 4. Porting

https://github.com/pikastech/pikascript/blob/master/bsp/stm32g070cb/Booter/main.c
https://github.com/pikastech/pikascript/blob/master/package/pikaRTThread/rt_pika.c

PikaPython, Release 0.1

4.2.2 Option 2: Run by byte input

The obj_runChar kernel API can specify an object to execute a script with one byte of input.

You need to run obj_runCharInit() before you can use obj_runChar.

Example code.

PikaObj* pikaMain = pikaScriptInit();

obj_runCharInit(pikaMain);

while(1){
char ch = my_get_char();
obj_runChar(pikaMain, ch);

}

Caution.

Kernel version needs to be no less than v1.8.3

4.2.3 Option 3: Read and run the entire line

obj_run kernel API can specify an object to execute a script, and use this API to execute a single-line or multi-line
script. The following is an example of the interactive running driver of CH32. This interactive running support is
written in the main loop of the firmware and starts to execute after the pikaScriptInit() initialization script is
executed.

PikaObj *PikaMain = pikaScriptInit();
printf(">>>");
while(1)
{

if(USART_GetFlagStatus(USART1, USART_FLAG_RXNE) == SET)
{

is_Rx_start = 1;
t_start = rt_tick_get();
rxCh = USART_ReceiveData(USART1);
if(rxCh < 128){

RxBuffer[RxCnt++] = rxCh;
}

}
if((is_Rx_start == 1) && (rt_tick_get() - t_start > 10)){

is_Rx_start = 0;
for(int i = 0; i< RxCnt; i ++)
{

USART_SendData(USART1, RxBuffer[i]);
while(USART_GetFlagStatus(USART1, USART_FLAG_TXE)== RESET);

}
obj_run(PikaMain, RxBuffer);
printf(">>>");
memset(RxBuffer, 0, 256);
RxCnt = 0;

(continues on next page)

4.2. Interactive Run 109

PikaPython, Release 0.1

(continued from previous page)

}
}

Driven Content

• Poll to receive characters and store them in the buffer.

• A reception is considered complete when no new characters are received for more than 10ms. Using the idle
time to determine the completion of the transmission of the string can support interactive running of multi-line
scripts. If you only need to run the single-numbered script, you can use the newline character '\n' to determine
the end of the string reception. When running a single-line script, the '\n' line break can be omitted, and a
multi-line script needs to have a '\n' line break. Newlines of the form "\r\n" are also supported.

• Echo the received string after receiving.

• Execute scripts using the obj_run kernel API. The specified object is the root object created by the
pikaScriptInit() init script, and the execution content is the received string.

• Clean up the receive buffer.

Notes:

• Kernel version needs to be at least v1.2.6

• When executing a multi-line script, you need to pass in a complete code block For example: the following script
is a complete code block, especially the 4th line, which needs to have an indent of 0 to mark the end of the code
block. and the last line needs to have a blank line, which means print('the end') with a newline at the end
of the script.

while a < 10:
a = a + 1

print(a)
print('the end')

The following example is also possible

while a < 10:
a = a + 1

print(a)

The following example does not work

Missing final newline
while a < 10:
a = a + 1

print(a)

The content of the while block is missing
while a < 10:

110 Chapter 4. Porting

PikaPython, Release 0.1

4.2.4 Quit Interaction

Type exit() to exit the interactive run.

4.2.5 Run temporary files

Run Python files

• Using pikaStudio (recommended). Drag and drop Python files to run

• Using other serial port tools (not recommended). Add #!pika to the first and last lines of the file you want to
run, and then send the file directly through the serial port to run it. This file will be sent to RAM and run directly,
and will be disabled after reboot. For example

#!pika
print('hello pikapython in file')
#!pika

Output.

>> #
=============== [code] ===============
print('hello pikapython in file')
=============== [code] ===============
hello pikapython in file
>>>>

Note that.

1. requires kernel version >= v1.11.4.

2. The first and last line of the temporary file must be #!pika, otherwise it will be treated as a normal
string.

4.2. Interactive Run 111

https://gitee.com/Lyon1998/pikapython/attach_files/1285327/download

PikaPython, Release 0.1

3.

4. __platform_getchar() is needed not to be too slow, otherwise the file will fail to be sent, or you
can try to slow down the serial port baud rate.

Run the bytecode file

Send the xxx.py.o bytecode file to run Output.

=============== [Code] ===============
[Info] Bytecode size: 305
=============== [RUN] ===============
hello pikapython in file

Note that.

1. requires kernel version >= v1.11.6.

4.3 Docking with IDE

4.3.1 Overview

The toolset that PikaPython needs to interface with the IDE includes:

Package manager pikaPackage.exe

Refer to package manager and module management related documents

Precompiler rust-msc-latest-win10.exe

Refer to module development related documents

4.3.2 calling method

1. Start path:

1. [Bare metal project root directory]/pikascript path

2. [rtthread project root directory]/packages/pikascript-latest path

2. Package Manager

1. When pulling a module remotely from PikaSciprt for the first time, you need to run pikaPackge.exe

2. After modifying request.txt, you need to run pikaPackage.exe

3. If you use the latest version of the module, you need to run pikaPackage.exe when updating the module to the
latest

112 Chapter 4. Porting

PikaPython, Release 0.1

3. Precompiler

a. run before each compilation [Note]: When running for the first time, use pikaPackage.exe to pull the precompiler
first.

4.3.3 Project Files

1. After executing the package manager or precompiler, you need to add all (including subfolders) .c files and
include paths under pikascript-lib, pikascript-core, pikascript-api .

2. Reset PikaPython project files: After deleting pikascript-lib, pikascript-core, and pikascript-api, re-run pika-
Package.exe and rust-msc-latest-win10.exe.

4.3.4 example

Automatic precompile script pikaBeforeBuild-keil.bat written for keil:

cd ../pikascript

if not exist pikascript-core (
pikaPackage.exe

)
rust-msc-latest-win10.exe

4.4 Serial port download Python script

The serial port download Python script is very similar to the interactive running, and still uses the obj_run kernel API
to run the script. Unlike interactive running, downloading a Python script also requires storing of the python script.

obj_run supports running Python scripts in the form of strings, so no matter how you store them, just pass the string of
the Python script to obj_run at the end. So the possible storage methods are: flash direct storage, file system, external
storage and so on.

PikaPython supports running Python script source code and parsed Pika bytecode.

4.4.1 Store Python source code

Storing the Python source code is very simple, just write the Python script string received by the serial port into Flash
completely. Instead of using the pikaScriptInit() function at startup, manually create the pikaMain root object, and then
use obj_run(pikaMain, code) to run the script, where code represents the stored python source code.

For specific code examples, please refer to:

1. https://github.com/pikastech/pikascript/blob/master/bsp/stm32g030c8/Booter/main.c

2. https://github.com/pikastech/pikascript/blob/master/bsp/stm32g030c8/Booter/pika_config.c

3. https://github.com/pikastech/pikascript/blob/master/bsp/stm32g030c8/Booter/pika_config.h

4.4. Serial port download Python script 113

https://github.com/pikastech/pikascript/blob/master/bsp/stm32g030c8/Booter/main.c
https://github.com/pikastech/pikascript/blob/master/bsp/stm32g030c8/Booter/main.c
https://github.com/pikastech/pikascript/blob/master/bsp/stm32g030c8/Booter/main.c

PikaPython, Release 0.1

4.4.2 Store Pika bytecode

(to be improved) For specific code examples, please refer to:

1. bsp/stm32g030c8/Booter/main.c

2. bsp/stm32g030c8/Booter/pika_config.c

3. bsp/stm32g030c8/Booter/pika_config.h

4.5 Running Files Using the File System

When the MCU has a filesystem ported, you can use the file API to run Python script files directly.

[Note: requires kernel version >= v1.10.0.

The file API needs to be interfaced to the following file systems by overriding the WEAK function.

/* fopen */
PIKA_WEAK FILE* __platform_fopen(const char* filename, const char* modes);
/* fclose */
PIKA_WEAK int __platform_fclose(FILE* stream);
/* fwrite */
PIKA_WEAK size_t __platform_fwrite(const void* ptr,

size_t size,
size_t n,
FILE* stream);

/* fread */
PIKA_WEAK size_t __platform_fread(void* ptr,

size_t size,
size_t n,
FILE* stream);

Use pikaVM_runSingleFile to run a single Python file (no other files can be imported).

Function prototype.

VMParameters* pikaVM_runSingleFile(PikaObj* self, char* filename);

Use pikaVM_runFile to run Python files and their import files. A new pikascript-api folder needs to be created
in the same level path as the running Python file to hold the intermediate files.

Function prototype.

VMParameters* pikaVM_runFile(PikaObj* self, char* file_name);

114 Chapter 4. Porting

CHAPTER

FIVE

MODULE DEVELOPMENT

5.1 Module Import

The embedded environment is significantly different from the PC, in many cases the MCU doesn’t even have a file
system.

But don’t worry, PikaPython already helps you to import modules easily with its official tools, all you need to do is to
write a line import, just like you do with Python on PC.

The only difference with Python for PC is that you need to run the pre-compiler provided by PikaPython once (no
complicated parameters and options, just double-click to run) before you can compile your PikaPython project with the
compiler.

5.1.1 Importing Python modules

PikaPython supports importing multiple Python files as modules, and there is no need to port the filesystem inside the
MCU (if you want to base it on a filesystem, you can, of course).

PikaPython’s pre-compiler converts Python files into bytecode and packages them into a library right on the PC devel-
opment machine, just like C.

This eliminates the need for a filesystem in a MCU with few resources (usually 20kB of ROM).

On the other hand, if you want to quickly try PikaPython on a new platform, you don’t need to go through the effort of
porting the filesystem for the new platform and then interfacing the filesystem with PikaPython.

(Note that a kernel version of not less than v1.8.0 is required)

Experiment

We still use keil’s emulation project as our experiment platform, so that we can experiment quickly without hardware.

First, refer to keil’s emulation project documentation to get the project.

Then create a new Python file test.py in the pikascript_simulation-keil/pikascript/ directory (all Python modules should
be placed in this directory).

115

Keil%20%E4%BB%BF%E7%9C%9F%E5%B7%A5%E7%A8%8B.html

PikaPython, Release 0.1

Then write the test code inside test.py as follows

test.py
def mytest():

print('hello from test.py!')

def add(a, b):
return a + b

Next, introduce test.py inside main.py and test the functions mytest() and add() that we defined in test.py

import Device
import PikaStdLib
import PikaStdData
import hello

import test

print('test start...')

test.mytest()
print(test.add(3, 5))

print('test end...')

Then, if you compile directly inside the keil project, you will see that the PikaPython Compiler message appears before
you start compiling the .c file, including the compiled test.py.

116 Chapter 5. Module Development

PikaPython, Release 0.1

This is because the PikaPython precompiler has been automatically run, a Keil-supplied setting that executes a script
before compilation begins, including running the PikaPython precompiler.

5.1. Module Import 117

PikaPython, Release 0.1

Then we start debugging the run and open the serial window to see the results

If you are interested in the principle, you can watch the explainer video.

118 Chapter 5. Module Development

https://www.bilibili.com/video/BV14t4y1x7nv?spm_id_from=333.999.0.0

PikaPython, Release 0.1

5.1.2 Importing C modules

A C module is a module that is implemented in C at the bottom, but can still be called with Python.

A C module named <module> usually consists of a <module>.pyi file (a python interface file) and the pikascript-
lib/<module> folder.

PikaPython imports C modules in the same way as Python modules, by directly import and then running a pre-compile.

After pre-compilation, some module linking files are automatically generated, all of them are in the pikascript-api
folder. Therefore, after introducing the C module, you need to add the following files to the project for compilation.

• All .c files in the pikascript-lib/<module> folder

• All .c files in the pikascript-api folder

Experiment

We are still using the keil emulation project as our experimentation platform.

We introduce the PikaStdData.pyi C module in main.py.

We open PikaStdData.pyi to see the classes and functions provided by this C module.

PikaStdData.pyi
class List:

def __init__(self): ...
add an arg after the end of list
def append(self, arg: any): ...
get an arg by the index
def get(self, i: int) -> any: ...
set an arg by the index
def set(self, i: int, arg: any): ...
get the length of list
def len(self) -> int: ...

...

You can see that there is a List class inside.

Introduce PikaStdData in main.py and create a new object list with the List class, then test the append() method
and the get() method of List.

import PikaStdLib

import PikaStdData

print('test start...')

list = PikaStdData.List()
list.append(1)
list.append('test')
list.append(2.34)

print(list.get(0))
print(list.get(1))
print(list.get(2))

(continues on next page)

5.1. Module Import 119

PikaPython, Release 0.1

(continued from previous page)

print('test end...')

When compiling, you can see that the PikaPython pre-compiler binds the PikaStdData C module to the project.

Running the simulation you can see the result

120 Chapter 5. Module Development

PikaPython, Release 0.1

You can also make your own C modules, all you need to do is write the <module>.pyi Python interface file and the .c
implementation file inside pikascript-lib/<module>.

Please refer to the documentation for making C modules for details.

5.2 Package manager

5.2.1 Click to download Package Manager

5.2.2 PikaPackage package manager

PikaPython has an officially supported package manager, PikaPackage, which is used for module management. It can
provide kernel, module download, module release, kernel, and module version switching functions, which is convenient
for distributing developed modules and managing module versions.

PikaPackage is a monolithic application for the windows platform. Based on the development of the go language, it
integrates the go-git component, which can realize the pull, update and version switching functions of the git repository
without installing git.

5.2.3 Workflow of PikaPackage

PikaPackage will automatically complete the series of processes shown in the figure above.

• The first is to check whether the /tmp/pikascript folder exists. If not, it will clone a pikascript repository first.

The /tmp directory refers to the tmp folder in the root directory of the disk where pikaPackage.exe is currently located.
For example, if pikaPackage.exe is on drive C, then /tmp is C:/tmp, and if it is on drive D, then /tmp is D:/tmp. The
clone repository uses the gitee source, so don’t worry about the network connection problem, and it is also very fast in
China.

• Update repository to latest state.

• Read the modules in the current request.txt file.

5.2. Package manager 121

index_cmodule.html

PikaPython, Release 0.1

Here is an example of a requestment.txt file, the format of this file is the same as the mainstream python pip package
manager format, fill in the module name and version number to pull the corresponding module.

pikascript-core
PikaStdLib
PikaStdDevice==v1.6.0
STM32G0==v1.2.0
PikaPiZero==v1.1.3

You can write the module name directly, e.g. pikascript-core, PikaStdLib.

Or specify the version number, e.g. PikaStdDeivce==v1.6.0, currently only the == symbol is supported, which
means the version number is strictly matched.

There is also a special version latest, which means pulling the latest module, which refers to the latest version of the
master branch in the pikascript repository

If you are a module user and not a developer, please be careful to avoid using the latest version at all costs.
Because the latest version is constantly changing, newer versions of the module may cause compatibility issues.

• pikaPackage.exe checks /tmp/pikascript/packages.toml file, which is a module description file in a repository, this
file describes all available modules and their versions. The following is the intercepted part of the packages.toml
file. In this file, there are four modules, pikascript-core, PikaStdLib, PikaStdDevice, and STM32, which can be
pulled, and the release section under each module describes the version that can be used.

The format of the module version is “ ”. Fill in the corresponding version name in request.txt to pull the corresponding
version of the module.

If you also want to publish the module, you can fill in the packages.toml file in the same way, and the package manager
can recognize the module you published.

[[packages]]
name = "pikascript-core"
releases = [
"v0.8.1 af42fd61884dc7048628b0d3bafaa42697f6e8ea",
"v0.8.2 af42fd61884dc7048628b0d3bafaa42697f6e8ea",
"v0.8.3 af42fd61884dc7048628b0d3bafaa42697f6e8ea",
"v0.9.0 332ef8afb0692cddd194782a07e30f2688d0f813",
"v0.10.0 c86eaefa4516dd82b1050fa74a7d85399459d5ed",
"v1.0.0 7b816b1546ef91a03f77760d4b10806ab956d452",
"v1.1.0 845d1fc6520237e2238087800f72608dcb81afa6",
"v1.1.1 c77e42450ed0eb09fcd7bb2b7d7c2b7eeeb55a2e",
"v1.1.2 f6ad2c78f49162ab3f898abc6a0a4d87777ce655",
"v1.1.3 6539072bf7bebb242ea40f8595bfb5c9aae3de7f",
"v1.2.0 ce3df083b68fbfc85e64e6793fe07a6736d6f29f",
"v1.2.1 e29a77527fd753c4eb811b047899534472bfc8ec",
"v1.2.2 5316ede928b01a20571103616a64666abbc40e0a",
"v1.2.3 5ae86929851ff6a62342a7072b77e9cf5be85f1c",
"v1.2.4 b7ac057d75e88736cc844de0bafb447a48f2fb6d",
"v1.2.5 db51f0520a673074a14ef0f5c4434da0d5c3425f",
"v1.2.6 044a2a8f0905c6ca90c633759f397323ce57eefd",

]

[[packages]]
name = "PikaStdLib"
releases = [
"v1.0.1 af42fd61884dc7048628b0d3bafaa42697f6e8ea",

(continues on next page)

122 Chapter 5. Module Development

PikaPython, Release 0.1

(continued from previous page)

"v1.1.0 0b3b866dbacc363c7b6b3899faa0cbcaccd59d5e",
"v1.2.0 ca29e112687525ee7511bd30418d368754627a00",
"v1.2.1 5ae86929851ff6a62342a7072b77e9cf5be85f1c",
"v1.2.2 b7ac057d75e88736cc844de0bafb447a48f2fb6d",

]

[[packages]]
name = "PikaStdDevice"
releases = [
"v1.3.0 af42fd61884dc7048628b0d3bafaa42697f6e8ea",
"v1.4.0 29c3c5b3b0cb4d3e41e6a2a0aef9e2826bc6f7ba",
"v1.4.1 6539072bf7bebb242ea40f8595bfb5c9aae3de7f",
"v1.4.2 5ae86929851ff6a62342a7072b77e9cf5be85f1c",

]

[[packages]]
name = "STM32"
releases = [
"v1.0.0 af42fd61884dc7048628b0d3bafaa42697f6e8ea",
"v1.0.1 af42fd61884dc7048628b0d3bafaa42697f6e8ea",
"v1.0.2 af42fd61884dc7048628b0d3bafaa42697f6e8ea",
"v1.1.0 a18910b5dc349c64297bba3a13b7044f41d48e5f",
"v1.1.1 91818aab0fa87b007e84866d479af5ac507339fe",
"v1.2.0 6bd4aac6e9aba2a603da602be8583021da1272c0",
"v1.3.0 7b816b1546ef91a03f77760d4b10806ab956d452",
"v1.4.0 29c3c5b3b0cb4d3e41e6a2a0aef9e2826bc6f7ba",
"v1.4.1 6539072bf7bebb242ea40f8595bfb5c9aae3de7f",
"v1.4.2 8866710f653ad005f5c3edc5e6417ad31075b7d5",
"v2.0.0 e29a77527fd753c4eb811b047899534472bfc8ec",
"v2.0.1 5ae86929851ff6a62342a7072b77e9cf5be85f1c",

]

• pikaPackage.exe go to the /tmp/pikascript/pacakge folder to find the folder with the same name as packages.toml,
then switch to the specified commit id, and then copy the folder to the current pikascript-lib folder.

If you want to publish a module, create a new folder with the same name as the module in the pikascript/package
directory, and then copy all the files contained in the module to this folder. After submitting the folder and obtaining
the commit id, fill in the commit id into the packages.toml description file.

Note: To limit the complexity of modules and improve maintainability, nested folders are not supported in module
folders.

• The *.py and *.pyi files contained in the module folder will be automatically copied to the current folder, in order
to be able to recognize the python module (python only recognizes the module files in the current folder when
importing a module.)

5.2. Package manager 123

PikaPython, Release 0.1

5.2.4 Error troubleshooting

If you are suspected of encountering problems during use, you can run pikaPackage.exe in cmd to view the complete
log information.

124 Chapter 5. Module Development

CHAPTER

SIX

STANDARD LIBRARY

6.1 PikaStdLib standard library

PikaStdLib is a built-in library of PikaPython, which must be installed. It includes memory checking tools and system
objects.

6.1.1 Install

Add the dependency of PikaStdLib to requestment.txt. The version number of PikaStdLib should be the same as the
version number of the kernel.

PikaStdLib

Run pikaPackage.exe

6.1.2 import

Add in main.py

#main.py
import PikaStdLib

6.1.3 class MemChecker()

MemChecker provides PikaPython’s memory monitoring capabilities. Can be used to view memory usage and check
for memory leaks.

def max(self):

Print the maximum memory footprint value.

def now(self):

Print the current memory usage value.

def getMax(self)->float:

Returns the largest memory footprint

125

PikaPython, Release 0.1

def getNow(self)->float

Returns the current memory usage value.

def resetMax(self)

Reset the maximum memory usage value Example:

main.py
import PikaStdLib
mem = PikaStdLib.MemChecker()
print('mem used max:')
mem.max()
print('mem used now:')
mem.resetMax()
print('mem used max:' + str(mem.getMax()))
print('mem used now:' + str(mem.getNow()))

6.1.4 class SysObj()

SysObj is used to provide built-in functions, the scripts executed in main.py are executed by the root object, and the
root object is created by the SysObj class, so the methods in the SysObj class are built-in functions.

def type(arg: any):

print variable type

def remove(argPath: str):

To remove a variable/object, use a string when removing, e.g. remove('a').

def int(arg: any) -> int:
def float(arg: any) -> float:
def str(arg: any) -> str:

for type conversion

def print(arg:any):

Inherited from BaseObj, provides print output. Formatted output is not currently supported.

6.2 PikaStdDevice Standard Device

PikaStdDevice is an abstract device model that provides a unified API for peripherals across platforms.

126 Chapter 6. Standard Library

PikaPython, Release 0.1

6.2.1 Installation

• Add the PikaStdDevice dependency to requestment.txt.

PikaStdDevice

• Run pikaPackage.exe

6.2.2 Why do we need a standard device module

What is a standard device module? Let’s start with other scripting technologies, such as MicroPython, there is no unified
API for peripheral calls, which makes users need to relearn the API when using different platforms, for example, the
following is the code for MicroPython to drive GPIO on STM32F4 platform.

This is the ESP8266

It is obvious that when selecting the pin, one uses a string, while the other uses an integer, and when controlling the
level, one uses the high() and low() methods, while the other uses the on() and off() methods. Is there any way
to unify the APIs of peripherals, so that users only need to be familiar with a set of APIs, they can be common in any
platform? There is a way, and it is the PikaStdDevice standard device driver module.

6.2.3 Module structure

• The PikaStdDevice module provides the basic peripheral Python modules for GPIO, IIC, PWM, etc.

• PikaStdDevice is based on the pika_hal device abstraction layer. pika_hal is a pure c language device
abstraction layer that unifies peripheral operations of different platforms into the same API for PikaStdDevice
to call, so that different platforms (STM32, ESP32, BL602) etc. can use common Python code to control the
device.

• The pika_hal device abstraction layer needs to be adapted in different platforms (Platform Port), by rewriting
the WEAK function like pika_hal_platform_xxxx() in different platforms, it is possible to provide support for
different platforms.

• Besides PikaStdDevice modules, there are also Python modules like sensor / motor, which are based on
pika_hal. These modules use GPIO, IIC, PWM and other adapted functions of pika_hal, so no additional
adaptations are needed besides pika_hal to use them.

6.2. PikaStdDevice Standard Device 127

PikaPython, Release 0.1

6.2.4 PikaStdDevice module example

Using the GPIO module as an example, here is the user API defined by PikaStdDevice

class GPIO:
def __init__(self):

pass

def init(self):
pass

def setPin(self, pinName: str):
pass

def setId(self, id: int):
pass

def getId(self) -> int:
pass

def getPin(self) -> str:
pass

def setMode(self, mode: str):
pass

def getMode(self) -> str:
pass

def setPull(self, pull: str):
pass

def enable(self):
pass

def disable(self):
pass

def high(self):
pass

def low(self):
pass

def read(self) -> int:
pass

The sample code for the PikaStdDevicemodule is under the https://gitee.com/Lyon1998/pikascript/tree/master/examples/Device
path. The machine module in the example is a simple renaming of the PikaStdDevice module.

128 Chapter 6. Standard Library

PikaPython, Release 0.1

6.2.5 pika_hal device abstraction layer

Design philosophy

• Efficient. Pure C implementation, with streamlined internal links.

• Standard. linux-like design, all types of device operations have and only have 5 standard file-like APIs: open(),
close(), write(), read(), ioctl().

Programming model

All devices follow the linux-like file programming model, all types of devices use the pika_dev structure as a device
handle, and all types of devices have and only have the following five control APIs.

open()

• Overview

The open() function is used to open a device and is called first.

• The function prototype

pika_dev* pika_hal_open(PIKA_HAL_DEV_TYPE dev_type, char* name);

• Parameter

6.2. PikaStdDevice Standard Device 129

PikaPython, Release 0.1

close()

• Overview

The close() function is used to close a device, and is called last, to avoid memory leaks.

• Function prototype

int pika_hal_close(pika_dev* dev);

• Parameters

ioctl()

• Overview

The ioctl() function is used to control the device, including

– config

– enable

– disable - disable

• Function prototypes

int pika_hal_ioctl(pika_dev* dev, PIKA_HAL_IOCTL_CMD cmd, ...) ;

• Parameter

read()

• Overview

The read() function is used to read data from a device.

• Function prototype

int pika_hal_write(pika_dev* dev, void* buf, size_t len);

• Parameters

write()

• Overview

The write() function is used to write data to a device.

• The function prototype

int pika_hal_write(pika_dev* dev, void* buf, size_t len);

• Parameter

130 Chapter 6. Standard Library

PikaPython, Release 0.1

Driver adaptation

Adapt pika_hal to the platform by rewriting the following pika_hal_platform_XXXX prefixed WEAK functions for
the device, where XXXX is the device type name, such as GPIO, PWM, etc.

PIKA_WEAK int pika_hal_platform_XXXX_open(pika_dev* dev, char* name);
PIKA_WEAK int pika_hal_platform_XXXX_close(pika_dev* dev);
PIKA_WEAK int pika_hal_platform_XXXX_read(pika_dev* dev, void* buf, size_t count);
PIKA_WEAK int pika_hal_platform_XXXX_write(pika_dev* dev, void* buf, size_t count);
PIKA_WEAK int pika_hal_platform_XXXX_ioctl_enable(pika_dev* dev);
PIKA_WEAK int pika_hal_platform_XXXX_ioctl_disable(pika_dev* dev);
PIKA_WEAK int pika_hal_platform_XXXX_ioctl_config(pika_dev* dev, pika_hal_XXXX_config*␣
→˓cfg);

Reference adaptation code.

https://gitee.com/Lyon1998/pikapython/tree/master/package/BLIOT https://gitee.com/Lyon1998/pikapython/tree/
master/package/STM32G0 https://gitee.com/Lyon1998/pikapython/tree/master/package/ESP32

Case Tutorial 1 - Adaptation of WIFI devices on ESP32

source link

First, we need to include some necessary header files such as pika_hal.h, esp_wifi.h, esp_event.h, etc. These header
files provide the definitions and functions related to pika_hal and esp32.

#include "... /pikascript-lib/pikastddevice/pika_hal.h"
#include "esp_event.h"
#include "esp_mac.h"
#include "esp_netif.h"
#include "esp_wifi.h"
#include "freertos/freertos.h"
#include "freertos/event_groups.h"
#include "freertos/task.h"
#include "nvs_flash.h"

Then, we define some global variables and constants to record the status and configuration information of WIFI. For
example, wifi_started indicates whether WIFI has been started, wifi_sta_connect_requested indicates whether a con-
nection to a WIFI hotspot was requested, wifi_sta_disconn_reason indicates the reason for a failed connection, etc.

static volatile pika_bool wifi_started = pika_false;
static volatile pika_bool wifi_sta_connect_requested = pika_false;
static volatile pika_bool wifi_sta_connected = pika_false;
static volatile pika_hal_wifi_status wifi_sta_disconn_reason = pika_false; static␣
→˓volatile pika_hal_wifi_status wifi_sta_disconn_reason =

pika_hal_wifi_status_idle;
static eventgrouphandle_t wifi_event_group;
static esp_netif_t* sta_netif = null;
static esp_netif_t* ap_netif = null;

Next, we define a helper function _ip_str2u32 that converts the IP address in string form to a value of type uint32_t.
This function iterates over each number in the string and stores it in an array of type uint8_t, then returns the uint32_t
value represented by this array.

6.2. PikaStdDevice Standard Device 131

https://gitee.com/Lyon1998/pikapython/tree/master/package/BLIOT
https://gitee.com/Lyon1998/pikapython/tree/master/package/STM32G0
https://gitee.com/Lyon1998/pikapython/tree/master/package/STM32G0
https://gitee.com/Lyon1998/pikapython/tree/master/package/ESP32
https://gitee.com/Lyon1998/pikapython/blob/master/package/ESP32/pika_hal_ESP32_WIFI.c

PikaPython, Release 0.1

uint32_t _ip_str2u32(char* ip_str) {
uint32_t ip = 0;
uint8_t* ip_u8 = (uint8_t*)&ip;
char* p = ip_str;
for (int i = 0; i < 4; i++) {

ip_u8[i] = atoi(p);
p = strchr(p, '.') ;
if (p == null) {

break;
}
p++;

}
return ip;

}

Immediately afterwards, we define an event handler function event_handler to respond to events of different types and
IDs and to perform the corresponding actions based on the event data. For example, in the WIFI_EVENT_STA_START
event, the esp_wifi_connect function is called if a connection to a hotspot is requested; in the IP_EVENT_STA_GOT_IP
event, the wifi_sta_connected is set to PIKA_TRUE and the wifi_sta_disconn_reason is set to PIKA_TRUE. dis-
conn_reason to PIKA_HAL_WIFI_STATUS_GOT_IP, etc.

static void event_handler(void* event_handler_arg,
esp_event_base_t event_base,
int32_t event_id,
void* event_data) {

// ...
}

Then, we implement several main device manipulation functions corresponding to turning on, turning off, configuring
and controlling the WIFI device. Each of these functions requires passing a pointer to a device object (pika_dev) and
returns the corresponding result or error code, depending on the case.

• The pika_hal_platform_WIFI_open function is used to initialize the NVS (non-volatile storage), the network
interface and the event loop, and to create an event group.

• The pika_hal_platform_WIFI_close function is used to deinitialize the NVS, the network interface and the
event loop, and to delete the event group.

• The pika_hal_platform_WIFI_ioctl_config function is used to configure the WIFI mode, hotspot infor-
mation, etc. based on the ioctl_config field (type pika_hal_WIFI_config) in the device object. In case of STA
mode, the configuration is not supported; in case of AP mode, the esp_wifi_set_config function is called to set
the SSID, password, channel, authentication mode and maximum number of connections of the hotspot, etc.

• The pika_hal_platform_WIFI_ioctl_enable function is used to start or stop the WIFI. first, the mode of
the WIFI is determined according to the mode field in the ioctl_config field, and then the esp_wifi_set_mode
function is called to set the mode. If WIFI is not yet started, you also need to register the event handler function,
create the default network interface, and call the esp_wifi_start function to start WIFI and set wifi_started to
PIKA_TRUE; otherwise, you just need to set the mode.

• The pika_hal_platform_WIFI_ioctl_disable function is used to stop or deinitialize WIFI. if WIFI is
already started, call the esp_wifi_stop and esp_wifi_deinit functions to stop and deinitialize WIFI and set
wifi_started to PIKA_FALSE; otherwise, -1 is returned to indicate an error.

• The pika_hal_platform_WIFI_ioctl_others function is used to handle other types of control commands,
such as getting the status of the WIFI, whether it is active or not, scanning for nearby hotspots, etc. These
commands are specified by the cmd parameter and data is passed or returned by the arg parameter. For example,
in the PIKA_HAL_IOCTL_WIFI_GET_STATUS command, the current connection status is determined based

132 Chapter 6. Standard Library

PikaPython, Release 0.1

on variables like wifi_sta_connect_requested and wifi_sta_connected and assigned to the pika_hal_wifi_ status
variable pointed to by arg. status variable.

6.2.6 Contribute

Please refer to the documentation in the Contribute to the community -> Contribute module section of the documenta-
tion to post the module you have written.

6.3 PikaStdData data structure

PikaStdData data structure library provides List (list), Dict (dictionary) data structure.

6.3.1 Install

Add the dependency of PikaStdLib to requestment.txt. The version number of PikaStdLib should be the same as the
version number of the kernel.

PikaStdLib

Run pikaPackage.exe

6.3.2 import

Add in main.py

#main.py
import PikaStdData

6.3.3 class List():

The List class provides the List list function. By creating an object of the List class, a list can be created. Such as:

import PikaStdData
list = PikaStdData.List()

Methods of the List class

add an arg after the end of list
def append(self, arg: any):

pass

get an arg by the index
def __getitem__(self, i: int) -> any:

pass

set an arg by the index
def __setitem__(self, i: int, arg: any):

(continues on next page)

6.3. PikaStdData data structure 133

PikaPython, Release 0.1

(continued from previous page)

pass

get the length of list
def len(self) -> int:

pass

Note that the index of the __setitem__() method cannot exceed the length of the List. If you want to add members
of the list, you need to use the append() method.

Use ‘[]’ brackets to index the list

List objects can be indexed using ‘[]’. list[1] = a is equivalent to list.__setitem__(1, a), and a = list[1]
is equivalent to a = list.__getitem__(1).

Use for loop to iterate over List

List objects support for loop traversal

example:

import PikaStdData
list = PikaStdData.List()
list.append(1)
list.append('eee')
list.append(23.44)
for item in list:

print(item)

6.3.4 class Dict():

The Dict class provides the Dict dictionary function, and a dictionary can be created by creating an object of the Dict
class. Such as:

import PikaStdData
dict = PikaStdData.Dict()

Dict class methods

get an arg by the key
def __getitem__(self, key: str) -> any:

pass

set an arg by the key
def __setitem__(self, key: str, arg: any):

pass

remove an arg by the key
def remove(self, key: str):

pass

134 Chapter 6. Standard Library

PikaPython, Release 0.1

Index dictionary using ‘[]’ brackets

Dict objects can be indexed using ‘[]’. dict['x'] = a is equivalent to dict.set('x', a) and a = dict['x'] is
equivalent to a = dict.__getitem__('x') .

Using a for loop to iterate over a Dict

Dict objects support for loop traversal

example:

import PikaStdData
dict = PikaStdData.Dict()
dict['a'] = 1
dict['b'] = 'eee'
dict['c'] = 23.44
for item in dict:

print(item)

6.3.5 class ByteArray(List)

[Note]: The version of PikaStdData requires at least v1.5.3

The ByteArray class provides the ByteArray byte array function. By creating an object of the ByteArray class, a byte
array can be created.

Such as:

import PikaStdData
bytes = PikaStdData.ByteArray()

The ByteArray class inherits from the List class and can use the methods of the List class.

Example:

>>> bytes = PikaStdData.ByteArray(b'test')
>>> for byte in bytes:
... print(byte)
...
116
101
115
116
>>> bytes.append(0xff)
>>> bytes.append(0x0f)
>>> print(bytes[4])
255
>>> print(bytes[5])
15

6.3. PikaStdData data structure 135

PikaPython, Release 0.1

6.4 PikaStdTask multitasking

The PikaStdTask multitasking library provides asynchronous multitasking capabilities of Task (task loop).

6.4.1 Install

Add the dependency of PikaStdLib to requestment.txt. The version number of PikaStdLib should be the same as the
version number of the kernel.

PikaStdLib

Run pikaPackage.exe

6.4.2 class Task():

The Task class provides the task loop function, and a task loop can be created by creating an object of the Task class.

Methods of the Task class

import PikaStdData

class Task:
calls = PikaStdData.List()

def __init__(self):
pass

regist a function to be called always
def call_always(self, fun_todo: any):

pass

regist a function to be called when fun_when() return 'True'
def call_when(self, fun_todo: any, fun_when: any):

pass

register a function to be called periodically
def call_period_ms(self, fun_todo: any, period_ms: int):

pass

run all registered function once
def run_once(self):

pass

run all registered function forever
def run_forever(self):

pass

run all registered function until time is up
def run_until_ms(self, until_ms: int):

(continues on next page)

136 Chapter 6. Standard Library

PikaPython, Release 0.1

(continued from previous page)

pass

need be overried to supply the system tick
def platformGetTick(self):

pass

Instructions:

Use the call_xxx() method to specify the calling method, and register the function to be executed in the task object.

Use the run_xxx() methods to specify how the task loops and execute all functions in the task object.

Time-related functions, such as call_period_ms() and run_until_ms(), need to provide the system clock by cre-
ating a new class that inherits from PikaStdTask, and then override the platformGetTick() method.

Notice:

All registered functions should be non-blocking, otherwise the entire task loop will be blocked.

The task loop is not real-time.

Example:

Create a new class that inherits from PikaStdTask.

STM32G0.py
class Task(PikaStdTask.Task):

override
def platformGetTick():

pass

Override the platformGetTick() method.

/* STM32G0_Task.c */

void STM32G0_Task_platformGetTick(PikaObj* self) {
obj_setInt(self, "tick", HAL_GetTick());

}

Python use cases

import STM32G0
import PikaPiZero
import PikaStdLib

pin = STM32G0.GPIO()
rgb = PikaPiZero.RGB()
mem = PikaStdLib.MemChecker()

pin.setPin('PA8')
pin.setMode('out')

(continues on next page)

6.4. PikaStdTask multitasking 137

PikaPython, Release 0.1

(continued from previous page)

pin.enalbe()

rgb.init()
rgb.enable()

print('task demo')
print('mem used max:')
mem.max()

def rgb_task():
rgb.flow()

def led_task():
if pin.read():

pin.low()
else:

pin.high()

task = STM32G0.Task()

task.call_period_ms(rgb_task, 50)
task.call_period_ms(led_task, 500)

task.run_forever()

6.5 PikaDebug debugger

The PikaDebug debugger module provides features such as breakpoint debugging.

6.5.1 Install

Add the dependency of PikaStdLib to requestment.txt. The version number of PikaStdLib should be the same as the
version number of the kernel.

PikaStdLib

Run pikaPackage.exe

138 Chapter 6. Standard Library

PikaPython, Release 0.1

6.5.2 class Debuger():

The Debuger class provides the debugger function. By creating an object of the Debuger class, a debugger can be
created.

Debuger class methods

class Debuger:
def __init__(self):

pass

def set_trace(self):
pass

The __init__() method is the method executed when the object is created, and the user does not need to know about
it. The set_trace() method can place a breakpoint in the code. When the code execution reaches the breakpoint, it
will stop and open the (pika-debug) terminal. The user can enter commands in the terminal (c : continue running,
q : to end debugging), or a python interactive call (printf(i), i = 10).

Example:

import PikaDebug

pkdb = PikaDebug.Debuger()

i = 0
while i < 10:

i = i + 1
print('i:' + str(i))
set a breakpoint here
pkdb.set_trace()

Command example:

n: (next) continue to run to the next breakpoint.

q: (quit) to exit debug mode and continue running.

p: (print) print variable, p i means print variable i.

Interactive run: Directly execute interactive commands, such as print(i), i = 2, etc.

Debug logging example
i : 1
(pika-debug) n
i : 2
(pika-debug) n
i : 3
(pika-debug) n
i : 4
(pika-debug) p i
4
(pika-debug) print(i)
4

(continues on next page)

6.5. PikaDebug debugger 139

PikaPython, Release 0.1

(continued from previous page)

(pika-debug) i = 2
(pika-debug) n
i : 3
(pika-debug) n
i : 4
(pika-debug) i = 9
(pika-debug) n
i : 10
(pika-debug) i = 2
(pika-debug) n
i : 3
(pika-debug) q
i : 4
i : 5
i:6
i : 7
i :8
i :9
i : 10

6.6 PikaCV Image Processing Libraries

PikaCV implements some commonly used image processing algorithms.

6.6.1 Install

1. Add the dependency of PikaCV to requestment.txt.

PikaCV

2. Run pikaPackage.exe

6.6.2 Import

Add in main.py

#main.py
import PikaCV as cv

140 Chapter 6. Standard Library

PikaPython, Release 0.1

6.6.3 class Image():

The Image class is the basis of the PikaCV,and subsequent image processing algorithms are based on the Image class.By
creating an object of the Image class,an empty image can be created.Such as:

import PikaCV
img = cv.Image()

Image write and read

PikaCV can read Jpeg format files and write bmp format files.

def read(self, path: str):
"""Read the image from the specified path,
Need implement the `__platform_fopen()`, `__platform_fread()`
and `__platform_fclose()`"""

...

def write(self, path: str):
"""Write the image to the specified path,
Need implement the `__platform_fopen()`, `__platform_fwrite()`
and `__platform_fclose()`"""
...

def loadJpeg(self, bytes: any):
"""Load the image from bytes"""

def loadRGB888(self, width: int, height: int, bytes: bytes):
"""Load the image from bytes"""

def loadRGB565(self, width: int, hight: int, bytes: bytes):
"""Load the image from bytes"""

def loadGray(self, width: int, hight: int, bytes: bytes):
"""Load the image from bytes"""

Image properties

The size of an image is width * hight * channel

def width(self) -> int:
"""Get the width of the image"""

def hight(self) -> int:
"""Get the hight of the image"""

def format(self) -> int:
"""Get the format of the image.
The format is one of the `ImageFormat` enum,
like `ImageFormat.RGB888`"""

def data(self) -> bytes:
(continues on next page)

6.6. PikaCV Image Processing Libraries 141

PikaPython, Release 0.1

(continued from previous page)

"""Get the data of the image"""

def getPixel(self, x: int, y: int, channel: int) -> int:
"""Get the pixel value of the specified channel.
For example, if the format of image is `RGB888`,
the channel `0`, `1`, `2`, means `R`, `G`, `B`,
and for the format of `GRAY8`, the channel is `0`
"""

def setPixel(self, x: int, y: int, channel: int, value: int):
"""Set the pixel value of the specified channel.
For example, if the format of image is `RGB888`,
the channel `0`, `1`, `2`, means `R`, `G`, `B`,
and for the format of `GRAY8`, the channel is `0`
"""

def size(self) -> int:
"""Get the size of the image by bytes"""

Image operations

1. add() and minus() is pixel-by-pixel operation.When the result of the operation exceeds 255, it is classified as
255, and when it is below 0, it is classified as 0.

2. The channel order is RGB in merge() and split()

6.6.4 class Converter():

Converter class mainly implements the conversion between image formats, and currently Converter supports the fol-
lowing image storage formats and conversions

- means no action* means that an intermediate transformation is required means that it can be converted directly

An example of an image format conversion operation is as follows:

cv.Converter.toBMP(img)

6.6.5 class Transforms():

The Transforms class mainly implements image transformation algorithms, and the transformation algorithms that have
been implemented so far are:

1. rotateDown(image: Image)

This function can rotates the image by 180 degrees.

2. threshold(image:Image,thre:int,maxval:int,thresholdType:int)

This function is used to convert an image to a binary image.

thre:When the value of the thresholdType is 0-4, thre is used as the demarcation threshold for the image

thresholdType: Threshold type, which means as follows:

142 Chapter 6. Standard Library

PikaPython, Release 0.1

3. setROI(image:Image,x:int,y:int,w:int,h:int)

This function is used to select a ROI from an image, the definition of the area is xywh, x and y represent the
upper left vertex coordinates of the region, w represents the width of the area, and h represents the height of the
area.

4. getOTSUthre(image:Image) -> int

This function implements OTSUFor the specific principle, please participate in the paper, the return value of the
function is the threshold calculated by the OTSU method.

5. setOTSU(image:Image)

This function uses the OTSU algorithm to binaryize the image.

6. resize(image:Image,x:int,y:int,resizeType:int)

This function implements the scaling of the image, with x and y being the target size of the image

resizeType:The scaling method of the image. 0 represents the nearest neighbor algorithm.

7. adaptiveThreshold(image:Image,maxval:int,subsize:int,c:int,method:int)

methodAn algorithm used to calculate the threshold within a neighborhood. 0 represents mean filtering, 1 rep-
resents median filtering.

c:offset value

subsize: Convolutional kernel size

6.6.6 class Filter

The Filter class implements some commonly used image filtering algorithms, and the algorithms that have been imple-
mented so far are:

1. meanFilter(image:Image,ksizex:int,ksizey:int)

Mean filtering, ksizex and ksizey are the size of x and y of the convolutional kernels, respectively. There is
currently no support for pads, so the size of the image after filtering equal W-F+1 when ksizex=ksizey.

2. medianFilter(image:Image)

Median filtering, currently only supports convolutional kernels with a size of 3*3.

6.6. PikaCV Image Processing Libraries 143

https://u-aizu.ac.jp/course/bmclass/documents/otsu1979.pdf

PikaPython, Release 0.1

6.7 requests module declaration

Author: Onceday Date: 20221210

6.7.1 Module basic information

1. Based on webclient.c development, temporarily support the simplest get request and post request.

2. Additional support for simple URL concatenation on get requests.

3. Ability to specify additional request header keywords.

4. The returned data includes the status code, payload length, and payload content.

6.7.2 install

requestment.txt join

requests

6.7.3 usage

1. Import module first

import requests

2. Then enter the method and url address

result = requests.request("GET", "http://pikascript.com/")

3. If everything succeeds, the result will contain the following information

content_length: int Returns the length of the text content
text: str The text content returned
state_code: int get Indicates the status code of the request
headers: str The response header returned
url: str get Indicates the url of the request

text is the core returned data. For the request in (2), it can be shown as follows:

print(result.text)

So that’s the web page http://pikascript.com/

4. If this request Failure, result will be an empty object, so you need to determine whether result is empty.

request The available parameters of the module are as follows:

request(method: str, url: str, params=None, headers=None, data=None) -> Response:

• method, optional GETPOSTThe two most basic operations

• url, that is, the standard url field. Note that the length of the field is limited. It is recommended that the field
not exceed 2Kb.

144 Chapter 6. Standard Library

PikaPython, Release 0.1

• paramsOptional. Used to concatenate parameters after a given url field. The characters are automatically es-
caped, or you can concatenate parameters in the url manually.

• headersThis parameter is optional. The keyword, such asHost , is used to specify the request header. This
parameter is optional.

• dataLoad data used to transmit in POST, note that it is of string type.

• ResponseThe returned response object is returned only when the response to the sent request is successful.
Otherwise, it is None

6.7.4 Concatenate URL

The extra support for the get method is to concatenate urls, which also involves some character conversions. Because
there are some special characters in the URL that cannot be displayed directly, they must be escaped. It is simple to
use, as follows:

result = requests.request("GET", "http://pikascript.com/package", params = {"name":"get-
→˓test", "id":"23"})

The url is concatenated as follows:

http://pikascript.com/package?name=get-test&id=23

Then use this to send an http request. There is no complicated operation here, but simply concatenate the parameters
in the dictionary. If the returned data is displayed below, the result will not be empty until the response is successfully
received. Therefore, it is necessary to determine:

if result not None:
print(result.status_code)
print(result.content_length)
print(result.text)

6.7.5 post port

This interface is primitive, and if you want to upload the data yourself, you need to manually concatenate the content.
Here’s why:

1. The http protocol is very complex and there is no need to implement it again.

2. Embedded requirements are fixed. Here is a typical use:

import requests
print("test")
form_data = '------WebKitFormBoundaryrEPACvZYkAbE4bYB\r\nContent-Disposition: form-data;␣
→˓name="file"; filename="test_file.txt"\r\nContent-Type: text/plain\r\n\r\nhello,␣
→˓pikascript!\r\n------WebKitFormBoundaryrEPACvZYkAbE4bYB\r\nContent-Disposition: form-
→˓data; name="id"\r\n\r\n1670666272201\r\n------WebKitFormBoundaryrEPACvZYkAbE4bYB\r\
→˓nContent-Disposition: form-data; name="uploadFileNum"\r\n\r\n1\r\n------
→˓WebKitFormBoundaryrEPACvZYkAbE4bYB--\r\n'

print(form_data)
header = {"Content-Type": "multipart/form-data; boundary=----
→˓WebKitFormBoundaryrEPACvZYkAbE4bYB"}

(continues on next page)

6.7. requests module declaration 145

PikaPython, Release 0.1

(continued from previous page)

a = requests.request("POST", "http://pikascript.com/upload", headers=header, data=form_
→˓data)

if a not None:
print(a.headers)
print(a.content_length)
print(a.text)

The normal output is as follows:

HTTP/1.1 200 OK
309
{"files":{"file":[{"fieldName":"file","originalFilename":"test_file.txt","path":"html/
→˓upload/pJwNgC8fobWOLN_l9qmAk-Oi.txt","headers":{"content-disposition":"form-data;␣
→˓name=\"file\"; filename=\"test_file.txt\"","content-type":"text/plain"},"size":18}]},
→˓"fields":{"id":["1670666272201"],"uploadFileNum":["1"]}}

Here’s an explanation of the above behavior:

1. First specify additional header keywords, Content-Type indicates the type of load, multipart/form-data is
a common form type, and boundary specifies the dividing line between different parts of the form.

Content-Type:multipart/form-data; boundary=----WebKitFormBoundaryrEPACvZYkAbE4bYB

----WebKitFormBoundaryrEPACvZYkAbE4bYB Is used to split the load content, this is simply some random
characters, so can be mixed with some identifiers WebKitFormBoundaryr Inside.

You will notice that this separator may duplicate the content of the transmission! Yes, it could be repeated, which would
cause the server to fail parsing and then have to pass it again. So it’s a random string every time, and the probability of
repeating it many times in a row is very low. The above form data is the encoded string, which contains three kinds of
data:

1. File name, file type, and file content “hello, pikascript!” .

2. The mapping ID.

3. Number of uploaded files.

The POST key requires the following two request keywords:

header buffer:POST http://pikascript.com/upload HTTP/1.1
Content-Type:multipart/form-data; boundary=----WebKitFormBoundaryrEPACvZYkAbE4bYB
Content-Length: 408

For a post, the request header is as simple as the above. 3. The return code is 200, indicating that the post request was
successful. Of course, the post response also carries some information about the uploaded content.

The most direct post transmission, only need the following call can.

a = requests.request("POST", "http://pikascript.com/upload", data=binary_data)

This transfers binary data, which is populated by default with the following:

Content-Type: application/octet-stream
Content-Length: (sizeof(data))

146 Chapter 6. Standard Library

PikaPython, Release 0.1

But this requires server corresponding analytical support, it is obvious that http://pikascript.com/upload can-
not parse the data.

6.7.6 Running process

The entire request code was developed based on webclient with simple changes. When the following statement is run,
the following process actually takes place:

result = requests.request("GET", "http://pikascript.com/package", params = {"name":"get-
→˓test"}, headers = {"Connection":"keep-alive"})

• First create a session object and apply for a 4Kb buffer to store the request headers.

• Write ‘GET’ to buffer.

• write “http://pikascript.com/package” into the buffer,

• Writes the concatenated part of the url ‘params = {”name”:”get-test”}’ into buffer, then fills in any other charac-
ters as necessary.

• Writes the specified keyword ‘headers = {”Connection”:”keep-alive”}’ to buffer.

• For POST, additional ‘Content-Type’ and ‘Content-Length’ contents are written.

• This will start resolving URL addresses, such as domain names to actual IP addresses

• Write the default standard header section keywords, including

1. Host: ()

2. User-Agent: PikaPython HTTP Agent

3. Accept: */*

• Create a socket connection and start communication -Send the request header portion before sending the
data (for POST). -Then wait to receive data, this time there is a possibility of timeout. -Parses the data, writing
content_length, text, header, status_code.

Finally, you can view the above four data through the returned result object.

6.8 PIKA-MQTT libary

6.8.1 __init__()

introduce

Instantiate one MQTT Client

args

returned value

give a typical example

Minimalist creation
c = MQTT("broker-cn.emqx.io")
Create a custom port
c = MQTT("broker-cn.emqx.io", 1111)
Create a custom clientID

(continues on next page)

6.8. PIKA-MQTT libary 147

PikaPython, Release 0.1

(continued from previous page)

c = MQTT("broker-cn.emqx.io", clientID="pikascript")
Requires the creation of a user name and password
c = MQTT("broker-cn.emqx.io", username="pikascript123", password="123456")
The creation of an encrypted mqtt
c = MQTT("broker-cn.emqx.io", 8883, username="pikascript123", password="123456",␣
→˓ca=open(cert_file).read())

6.8.2 setClientID()

introduce:

Setting clientID overrides the parameters at instantiation time parameter:

give a typical example

c.setClientID("pikascript")

6.8.3 setUsername()

introduce

Setting usrname overrides the instantiation parameters

parameter

returned value

give a typical example

c.setUsername("pikascript")

6.8.4 setPassword()

introduce

Setting password overrides the parameter used during instantiation

parameter

returned value

give a typical example

c.setPassword("pikascript")

148 Chapter 6. Standard Library

PikaPython, Release 0.1

6.8.5 setVersion()

introduce

Setting the mqtt version overrides the parameter at instantiation time

parameter

returned value

give a typical example

choosable "3.1" "3.1.1"
c.setVersion("3.1")

6.8.6 setCa()

introduce

Setting the ssl certificate overrides the parameter during instantiation Once this parameter is in effect, an ssl connection
is forced

parameter

returned value

give a typical example

c.setCa(open(cert_file).read())

6.8.7 setKeepAlive()

introduce

Setting the keepalive time overrides the parameter at instantiation time

parameter

returned value

give a typical example

cgs unit
c.setKeepAlive(120)

6.8. PIKA-MQTT libary 149

PikaPython, Release 0.1

6.8.8 setWill()

introduce

testamentary

parameter

returned value

give a typical example

c.setWill("/device/will", "{"name":"pikascript"}")

6.8.9 setDisconnectHandler()

introduce

Set the disconnection callback

parameter

returned value

give a typical example

def disconnect_cb():
print("mqtt disconnect")

c.setDisconnectHandler(disconnect_cb)

6.8.10 connect()

introduce

connect to server

parameter

null

returned value

give a typical example

c.connect()

150 Chapter 6. Standard Library

PikaPython, Release 0.1

6.8.11 disconnect()

introduce

Disconnect server

parameter

null

returned value

give a typical example

c.disconnect()

6.8.12 subscribe()

introduce

Subscribe to a subject

parameter

returned value

give a typical example

def sub_cb(evt):
print(evt.msg, evt.topic)

c.subscribe("/topic/sub", sub_cb)

6.8.13 unsubscribe()

introduce

Unsubscribe to a topic

parameter

returned value

give a typical example

c.unsubscribe("/topic/sub")

6.8. PIKA-MQTT libary 151

PikaPython, Release 0.1

6.8.14 listSubscribeTopics()

introduce

Lists the topics to which you are currently subscribed

parameter:

null

returned value

example:

t = c.listSubscribeTopics()
print(t)

6.8.15 publish()

introduce:

publish the message

parameters:

return values

example

c.publish("/topic/pub", 0, "{"msg":"hello pikascript"}")

6.8.16 Attachment 1: Error code

6.8.17 Second:Comprehensive example

coding=utf-8

def sub_test1_cb(evt):
print("sub test1 message:", evt.msg)

def sub_test2_cb(evt):
print("sub test2 message:", evt.msg)

def sub_test3_cb(evt):
print("sub test3 message:", evt.msg)

def disconnect_cb():
(continues on next page)

152 Chapter 6. Standard Library

PikaPython, Release 0.1

(continued from previous page)

print("mqtt disconnect")

def test():
MQTTS
c = MQTT("broker-cn.emqx.io", 8883, clientID="pikaone", username="pikascript123",␣

→˓password="123456", ca=open("/ca.crt").read())

Test a mentary
c.setWill("/device/will", "{"name":"pikascript"}", 0, True)

Set the dis connection callback
c.setDisconnectHandler(disconnect_cb)

connect to server
result = c.connect()
if result == 0:

print("connect success!")
else:

print("connect faild id={}".format(result))
return

Subscribe to a subject
c.subscribe("/pikascript/test1", sub_test1_cb, 0)
c.subscribe("/pikascript/test2", sub_test2_cb, 1)
c.subscribe("/pikascript/test3", sub_test3_cb, 2)

print("list subscribe topics:")
print(c.listSubscribeTopics())

print("start publish")

Send topic message
c.publish("/pikascript/test1", "{'msg'}:'hello from test1'", 0)
c.publish("/pikascript/test2", "{'msg'}:'hello from test2'", 1)
c.publish("/pikascript/test3", "{'msg'}:'hello from test3'", 2)

print("end publish")

Discount
result = c.disconnect()
if result == 0:

print("disconnect success!")
else:

print("disconnect faild id={}".format(result))
return

run
test()

6.8. PIKA-MQTT libary 153

PikaPython, Release 0.1

flow chart mqtt

154 Chapter 6. Standard Library

CHAPTER

SEVEN

C MODULE - BIND C CODE TO PYTHON MODULE

7.1 PikaPython C module overview

We still use keil’s simulation project as an example, if you don’t get the simulation project yet, please refer to 1. Three
minutes to get started quickly

7.1.1 PikaPython module and module interface

We open the pikascript folder and find that in addition to main.py, there are Device.pyi, PikaObj.pyi and PikaStdLib.pyi
in the root of the folder, which correspond to three PikaPython C modules (class package), each .pyi file itself is called
the module interface (package interface). A C module can contain several classes that are more related.

Each PikaPython C module consists of two parts: module interface and module implementation (package imple-
ment). Let’s start by opening Device.pyi to see the contents, we will call Device.pyi the Device module interface in
the subsequent documentation. Here is the entire contents of Device.pyi.

Device.pyi

(continues on next page)

155

Keil%20%E4%BB%BF%E7%9C%9F%E5%B7%A5%E7%A8%8B.html
Keil%20%E4%BB%BF%E7%9C%9F%E5%B7%A5%E7%A8%8B.html

PikaPython, Release 0.1

(continued from previous page)

class LED:
def on(self):

pass
def off(self):

pass

class Uart:
def send(self, data:str):

pass
def setName(self, name:str):

pass
def printName(self):

pass

As you can see, there are two classes defined in Device.pyi using pyhon standard syntax, the LED class and the Uart
class.

The LED class defines two methods, the on() method and the off() method, while the Uart class defines the
send(data:str) method, the setName(name:str) method, and the printName() method.

As you can see, all these methods have the feature that instead of being definitions of methods, they are declarations
(annotations) of methods, because all method implementations are passed out and none of them are written for imple-
mentation. And the method’s entry parameters are all with type declarations. For example, data:str means a data
parameter with the type str, i.e. a string type.

This is because the module implementation of this module is written in C, i.e. the C modules of PikaPython are
written with declarations in python syntax and implementations in C. PikaPython’s module development is a hybrid
programming technique for interface-oriented programming.

However, when using an existing module, it is not necessary to know the module implementation, but only the module
interface, in order to use the module.

7.1.2 Importing and calling modules

Let’s see how to use this module.

Let’s open main.py in the project, see the name, this file is the entry file for PikaPython.

The content of main.py is as follows

main.py
import Device
import PikaStdLib

led = Device.LED()
uart = Device.Uart()
mem = PikaStdLib.MemChecker()

print('hello wrold')
uart.setName('com1')
uart.send('My name is:')
uart.printName()
print('mem used max:')
mem.max()

(continues on next page)

156 Chapter 7. C Module - bind C code to Python module

PikaPython, Release 0.1

(continued from previous page)

print('mem used now:')
mem.now()

Importing an already written C module is very simple, for example, to import the Device module, you just need to
import Device, and note that all .py and .pyi files should be placed in the root directory of the pikascript fileshelf.

The call method uses the form uart.setName('com'), which is standard Python syntax and does not need much
introduction.

After writing the module calls in main.py, double-click on rust-msc-v0.5.0.exe to pre-compile the PikaPython project,
the pre-compiled output file is in the pikascrip-api folder.

The pika pre-compiler generates .h declaration files for the imported modules. The filenames start with the module
name and each class corresponds to one .h file.

7.1. PikaPython C module overview 157

PikaPython, Release 0.1

And PikaMain.h correspond to a special class that is the main PikaPython class, compiled from main.py.

158 Chapter 7. C Module - bind C code to Python module

PikaPython, Release 0.1

pikaScript.c and pikaScript.h, on the other hand, are initialization functions compiled from main.py. When the initial-
ization functions are run, the startup script is automatically executed.

7.1. PikaPython C module overview 159

PikaPython, Release 0.1

In the current main.py, the startup script is written in the outermost method call, which is:

led = Device.LED()
uart = Device.Uart()
mem = PikaStdLib.MemChecker()

print('hello wrold')
uart.setName('com1')
uart.send('My name is:')
uart.printName()
print('mem used max:')
mem.max()
print('mem used now:')
mem.now()

The compiled pikaScriptInit() initialization function corresponds to:

PikaObj * pikaScriptInit(){
PikaObj * pikaMain = newRootObj("pikaMain", New_PikaMain);
obj_run(pikaMain,

"\n"
"led = Device.LED()\n"

(continues on next page)

160 Chapter 7. C Module - bind C code to Python module

PikaPython, Release 0.1

(continued from previous page)

"uart = Device.Uart()\n"
"mem = PikaStdLib.MemChecker()\n"
"\n"
"print('hello wrold')\n"
"uart.setName('com1')\n"
"uart.send('My name is:')\n"
"uart.printName()\n"
"print('mem used max:')\n"
"mem.max()\n"
"print('mem used now:')\n"
"mem.now()\n"
"\n"
"\n");

return pikaMain;
}

7.2 PikaPython C module development process

We still use keil’s simulation project as an example, if you haven’t got the simulation project yet, please refer to 1.
Three minutes to get started quickly

7.2.1 New module interface

To write a new module, you first need to write a module interface file, for example, to write a math calculation module
Math, the first step is to write Math.pyi.

7.2.2 Writing class interfaces

Now we can create new classes inside Math.pyi. For example, if we want to create a new Adder class to implement the
relevant addition operations, we can add the Adder class inside Math.pyi.

Then we want Adder to provide addition operations for plastic and floating-point data, so we can add the byInt and
byFloat methods.

Math.pyi
class Adder:

def byInt(self, a:int, b:int)->int:
pass

def byFloat(self, a:float, b:float)->float:
pass

Use ... to replace pass is also avaliablefor example:

Math.pyi
class Addr:

def byInt(self, a:int, b:int)->int:...
def byFloat(self, a:float, b:float)->float:...

The above code defines the Adder class and adds two method declarations, byInt(self, a:int, b:int)->int,
indicating that the method name is byInt, the input parameters are a and b, the type of a and b are both int, and the

7.2. PikaPython C module development process 161

Keil%20%E4%BB%BF%E7%9C%9F%E5%B7%A5%E7%A8%8B.html
Keil%20%E4%BB%BF%E7%9C%9F%E5%B7%A5%E7%A8%8B.html

PikaPython, Release 0.1

return value is also int. and the return value is determined by ->int, which is the standard python syntax for writing
with type annotations.

The first argument of a method of a class in python is self, which is required by python syntax.

We add a Multiplier class to math.py to implement multiplication, which is written as follows.

Math.pyi
class Multiplier:

def byInt(self, a:int, b:int)->int:
pass

def byFloat(self, a:float, b:float)->float:
pass

This is the end of the interface. We introduce the Math module in main.py so that the Pika precompiler will go ahead
and precompile the Math module.

main.py
import Math

Double-click to run the pika precompiler.

Opening the pikascript-api folder shows that our newly written module interface is ready to be compiled.

162 Chapter 7. C Module - bind C code to Python module

PikaPython, Release 0.1

7.2.3 Writing the class implementation

Try compiling them.

7.2. PikaPython C module development process 163

PikaPython, Release 0.1

found that the compilation reported an error, suggesting that there are four functions not found in the definition.

This is normal because we did not write implementations for the classes of the Math module before, and we will write
implementations for those classes below.

For the convenience of module management, we put all the implementation files in the pikascript-lib folder.

164 Chapter 7. C Module - bind C code to Python module

PikaPython, Release 0.1

Under the pikascript-lib folder, create a new Math folder to hold the implementation code for the Math module.

image

Then create a new .c file in the Math folder. It is recommended to use the naming scheme “module_class_name.c” to
create a new .c file for each class to improve the clarity of the code.

7.2. PikaPython C module development process 165

PikaPython, Release 0.1

Then we write the method implementation of the class inside these two .c files. So the question arises, how do we know
which implementations should be written?

This is easy, we open Math_Multiplier.h and Math_Adder.h to find that the implementation functions we need to write
have already been declared.

/* Math_Multiplier.h */
/* ******************************** */
/* Warning! Don't modify this file!
/* ******************************** */
#ifndef __Math_Multiplier__H
#define __Math_Multiplier__H
#include <stdio.h>
#include <stdlib.h>
#include "PikaObj.h"

PikaObj *New_Math_Multiplier(Args *args);

double Math_Multiplier_byFloat(PikaObj *self, double a, doutlb b);
int Math_Multiplier_byInt(PikaObj *self, int a, int b);

#endif

/* Math_Adder.h */
/* ******************************** */
/* Warning! Don't modify this file!
/* ******************************** */
#ifndef __Math_Adder__H
#define __Math_Adder__H
#include <stdio.h>
#include <stdlib.h>
#include "PikaObj.h"

PikaObj *New_Math_Adder(Args *args);

double Math_Adder_byFloat(PikaObj *self, double a, double b);
int Math_Adder_byInt(PikaObj *self, int a, int b);

#endif

Then we directly implement these four functions in Math_Adder.c and Math_Multipler.c and we’re good to go.

166 Chapter 7. C Module - bind C code to Python module

PikaPython, Release 0.1

/* Math_Adder.c */
#include "pikaScript.h"

double Math_Adder_byFloat(PikaObj *self, double a, double b)
{

return a + b;
}

int Math_Adder_byInt(PikaObj *self, int a, int b)
{

return a + b;
}

/* Math_Multipler.c */
#include "pikaScript.h"

double Math_Multiplier_byFloat(PikaObj *self, double a, double b)
{

return a * b;
}

int Math_Multiplier_byInt(PikaObj *self, int a, int b)
{

return a * b;
}

At this point,compile the project again and it will pass.

7.2.4 Test the effect

Let’s test our newly written module with the following main.py

main.py
import Math

adder = Math.Adder()
muler = Math.Multiplier()

res1 = adder.byInt(1, 2)
print('1 + 2')
print(res1)

res2 = adder.byFloat(2.3, 4.2)
print('2.3 + 4.2')
print(res2)

res3 = muler.byInt(2, 3)
print('2 * 3')
print(res3)

res4 = muler.byFloat(2.3, 44.2)
(continues on next page)

7.2. PikaPython C module development process 167

PikaPython, Release 0.1

(continued from previous page)

print('2.3 * 44.2')
print(res4)

The result of the run is as follows.

This shows that the module we wrote is working correctly.

7.2.5 Available type annotations

The following table lists all the type declarations supported by PikaPython, and how they correspond to the native types
of the C language.

Note

1. str is returned as char* in c. If the string to be returned is a local variable in the function, it needs to
be cached with obj_cacheStr to avoid dangling references when it goes out of the function scope,
e.g.: return obj_cacheStr(self, res);.

2. bytes as return value returns Arg* in c. This is because bytes needs to specify the length
and returning uint8_t* does not meet the requirement. The correct way to return is: return
arg_newBytes(bytes, len);.

Translated with www.DeepL.com/Translator (free version)

7.2.6 Publishing modules

In the spirit of open source, it is very cool and exciting to publish your own modules.

All you need to do to publish a module is to publish the class interface and class implementation files.

For example, to publish the newly written Math module, you publish the Math.pyi file and the files in pikascript-lib/Math
folder.

168 Chapter 7. C Module - bind C code to Python module

PikaPython, Release 0.1

Please refer to the documentation in the Participate in Community Contributions section to distribute the modules
you write.

7.3 C module variable parameters

The C module supports variable arguments, just use *xxx input arguments, any number of arguments will be packed
into the PikaTuple data type at the C level, use pikaTuple_getSize() to get the number of variable arguments, use
pikaTuple_getArg() to get arg based on the position of the variable arguments. The pikaTuple_get<Type> api
is also supported to get the value of the specified type directly.

[Note]

• Requires kernel version >= v1.11.7

• Variable arguments must be placed after positional arguments

Example.

test.pyi
def vals(a:int, *val):...

// test.c
void test_vals(PikaObj* self, int a, PikaTuple* val){

printf("a: %d\n", a);
for(int i =0; i< pikaTuple_getSize(val); i++){

Arg* arg_i = pikaTuple_getArg(val, i);
printf("val[%d]: %d\n", i, arg_getInt(arg_i));

}
}

Output the result:

>>> test.vals(1, 2, 3, 4)
a: 1
val[0]: 2
val[1]: 3
val[2]: 4
>>>

7.3. C module variable parameters 169

PikaPython, Release 0.1

7.4 C module keyword parameters

C module supports keyword arguments, just use **xxx input arguments, any number of arguments will be packed into
PikaDict data type at C level, use pikaDict_getArg() to get arg based on keyword. The pikaDict_get<Type>()
api is also supported to get the value of the specified type directly.

[Note]

• Requires kernel version >= v1.11.7

• Keyword arguments must be placed after positional and variable arguments

Example.

test.pyi
def keys(a:int, **keys):...

// test.c
void test_keys(PikaObj* self, int a, PikaDict* keys){

printf("a: %d\n", a);
printf("keys['b']: %d\n", i, pikaDict_getInt(keys, "b"));
printf("keys['c']: %d\n", i, pikaDict_getInt(keys, "c"));

}

Output result:

>>> test.keys(1, b=2, c=3)
a: 1
keys['b']: 2
keys['c']: 3
>>>

7.5 C module returns List/Dict

7.5.1 List

test.pyi
def test_list()->list: ...

// test.c
#include "PikaStdData_List.h"
PikaObj* test_test_list(PikaObj* self){

/* Create list object */
PikaObj* list = newNormalObj(New_PikaStdData_List).
/* Initialize the list */
PikaStdData_List___init__(list).
/* Create arg */ with api of arg_new<type>.
Arg* str_arg1 = arg_newStr("aaa");
/* Add to list object */
PikaStdData_List_append(list, str_arg1).
/* destroy arg */
arg_deinit(str_arg1);

(continues on next page)

170 Chapter 7. C Module - bind C code to Python module

PikaPython, Release 0.1

(continued from previous page)

/* Return the list */
Returns the list.

}

7.5.2 Dict

Note: requires kernel version >= v1.10.8.

test.pyi
def test_dict()->dict: ...

// test.c
#include "PikaStdData_Dict.h"
PikaObj* test_test_dict(PikaObj* self){

PikaObj* dict = newNormalObj(New_PikaStdData_Dict).
PikaStdData_Dict___init__(dict).
Arg* para1 = arg_newInt(1);
Arg* para2 = arg_newInt(2);
PikaStdData_Dict_set(dict, "para1", para1).
PikaStdData_Dict_set(dict, "para2", para2);
arg_deinit(para1).
arg_deinit(para2).
Return dict.

}

7.6 C module constants

C modules support adding constants to classes or modules, either using the val:type syntax. These constants need to
be assigned at initialization time, so the __init__() method needs to be defined, e.g.

class cJSON:
cJSON_Invalid: int
cJSON_False: int
def __init__(self):...
...

void pika_cjson_cJSON___init__(PikaObj* self) {
/* const value */
obj_setInt(self, "cJSON_Invalid", cJSON_Invalid);
obj_setInt(self, "cJSON_False", cJSON_False);

...
}

These constants can be used directly without creating an object, i.e. as class properties.

print(cJSON.cJSON_Invalid)

Note that PikaPython class properties are read-only, and all modifications to class properties are invalid.

7.6. C module constants 171

PikaPython, Release 0.1

7.7 C module initialization

Define __init__() function directly in .pyi to perform module initialization, which will be triggered when the module
is loaded, PikaPython has a delayed module loading mechanism, import will not trigger module loading directly, but
only when the module is actually used for the first time.

For example:

test.pyi
def __init__():...
def hello():...

//test.c
void test___init__(PikaObj* self){

printf("now loading module test...\n");
}

void test_hello(PikaObj* self){
printf("hello!\n");

};

main.py
import test
print('before run test.hello()')
test.hello()
print('after run test.hello()')

Output.

before run test.hello()
now loading module test...
hello!
after run test.hello()

7.8 Module clipping

PikaPython module, except PikaStdLib standard library, all other modules support one-click cropping

As shown in the CH32V103 driver module in the figure below, the modules that are not needed can be directly cut out.
If there are several classes in a module that need to be used, can fine-cutting be done by class? This is also possible,
which will be introduced later.

172 Chapter 7. C Module - bind C code to Python module

PikaPython, Release 0.1

image

7.8.1 Cut by module

It is very simple to trim according to the module. Just delete the import statement in main.py, and the modules that are
not imported will be automatically trimmed by the precompiler.

Taking the stm32g030c8 project as an example, the default main.py is as follows:

7.8. Module clipping 173

PikaPython, Release 0.1

The first line is to import the base object. The base object is provided by the kernel, does not occupy the module space,
and does not need to be clipped. The second line is the standard library and cannot be trimmed. The third row of
STM32G0 chip modules and the fourth row of the on-board resource modules of the PikaPiZero development board
can be cut. Compile and run, and see that the code size is 48k+3k, about 51K.

Unimport the PikaPiZero module

Then precompile and compile the result: It can be seen that the code size has been reduced to 46K, indicating that the
module has been successfully cut.

Then cancel the import of the STM32G0 module

Code size reduced to 36K

174 Chapter 7. C Module - bind C code to Python module

PikaPython, Release 0.1

7.8.2 Cut by class

Using the inheritance function of the module, you can fine-tune according to the class. Modules that are directly
imported in main.py are in a runtime ready state, so all classes will be added to the project. For modules that are
indirectly imported by other files, precompiled can determine which ones will not be used, so only used classes
will be added to the project.

In this way, we can create a new module, inherit the required classes from the modules that need to be used, and then
only import the newly created module, you can cut out the classes that are not needed in the module. .

For example, there are 7 classes of GPIO, Time, ADC, UART, PWM, IIC, and lowLevel in STM32G0, and I only use
the GPIO class.

You can create a new myDevice module, and then inherit only the GPIO class from STM32G0.

7.8. Module clipping 175

PikaPython, Release 0.1

Then change import STM32G0 in main.py to import myDevice

It can be seen that compared to using the complete STM32G0 module, the code size is reduced to 43K

176 Chapter 7. C Module - bind C code to Python module

CHAPTER

EIGHT

KERNAL API

8.1 Pika object PikaObj

8.1.1 head File

#include "PikaObj.h"

8.1.2 Overview

• The object API is a series of functions prefixed with obj_.

• The Object API provides a series of interfaces for accessing Python objects in C. Most frequently used in
module development.

• The object API itself is also designed using object-oriented ideas. The first entry parameters of these functions
are pointers to the objects to be operated.

• An object consists of two parts: properties and methods, so the object API is also divided into two parts: prop-
erties and methods.

8.1.3 type of data

The data type of the object itself is PikaObj, which is used by all Python objects when accessed in C.

struct PikaObj_t {
/* list */
Args* list;

};
typedef struct PikaObj_t PikaObj;

PikaObj internally maintains a parameter table, which contains attribute information, class information, method in-
formation, etc. Be careful not to directly access the parameter table inside PikaObj, please use the object API
to access PikaObj. This is because the object API, as an external interface, is stable for a long time, and the internal
implementation will change frequently with the iteration of the kernel code. Directly operating the interior of PikaObj
will greatly lose backward compatibility.

177

PikaPython, Release 0.1

8.1.4 Object Properties API

This part of the API provides access to Python object properties.

Attributes of primitive types

PikaObj supports integer, floating point, pointer, string four basic types of attributes. Use the set and get methods to
read and write properties of an object.

PikaObj objects are dynamic, so new properties can be added to the object at any time (the properties of static objects
are determined at construction time).

The APIs for primitive type properties are as follows:

/* set API */
int32_t obj_setInt(PikaObj* self, char* argPath, int64_t val);
int32_t obj_setPtr(PikaObj* self, char* argPath, void* pointer);
int32_t obj_setFloat(PikaObj* self, char* argPath, float value);
int32_t obj_setStr(PikaObj* self, char* argPath, char* str);
/* get API */
void* obj_getPtr(PikaObj* self, char* argPath);
float obj_getFloat(PikaObj* self, char* argPath);
char* obj_getStr(PikaObj* self, char* argPath);
int64_t obj_getInt(PikaObj* self, char* argPath);

Primitive type properties are named as obj_set[Type] and obj_get[Type].

The first input parameter is the object pointer to be manipulated. The second input parameter is attribute name/attribute
address.

PikaObj supports object nesting and can access properties of sub-objects. When accessing properties of sub-objects,
the second parameter is the property address, and when accessing properties of this object, the second value is property
name.

// set an Int type arg, the arg name is "a".
obj_setInt(self, "a", 1);
// set an Int type arg for subObjcet , the arg path is "subObj.a".
obj_setInt(self, "subObj.a", 1);

The third input parameter of the set method is the written property value, and the return value of the get method is the
read property value. The return value of the set method is an error code, 0 means no error occurred.

Generic properties

PikaObj supports generic properties and also provides set and get methods. Input parameters and return values are
similar to primitive types.

int32_t obj_setArg(PikaObj* self, char* argPath, Arg* arg);
Arg* obj_getArg(PikaObj* self, char* argPath);

Generic properties need to be converted to primitive types when used.

Use the following API to determine the current type of a generic property.

ArgType arg_getType(Arg* self);

178 Chapter 8. Kernal API

PikaPython, Release 0.1

Use the following API to convert generic properties to primitive types.

int64_t arg_getInt(Arg* self);
float arg_getFloat(Arg* self);
void* arg_getPtr(Arg* self);
char* arg_getStr(Arg* self);

Property management

• Determine whether an attribute exists, and the return value is 1 to indicate existence.

int32_t obj_isArgExist(PikaObj* self, char* argPath);

• Delete an attribute

int32_t obj_removeArg(PikaObj* self, char* argPath);

The return value is an error code, 0 means success.

8.1.5 Object method API

The object method API is divided into two parts: method registration and method invocation. The method registration
part is proxied by the precompiler, and the module developer only needs to use the method to call the API.

Method call API

void obj_run(PikaObj* self, char* cmd);

obj_run is a versatile API that can directly run Python scripts and supports multi-line scripts. The first entry parameter
is a pointer to the object, and the second entry parameter is the Python script as a string. Note that when passing in a
multi-line script, you should pass in a complete block of code.

8.1.6 Throw an exception

An exception can be thrown using obj_setErrorCode in the module, and the user can customize the exception handling
method (continue running or stop running). Throwing an exception is usually used in the method of the C module,
just pass in the self object pointer of the current method, and set errCode to non-zero to trigger the exception. The
obj_setSysOut method is often used in conjunction with the obj_setErrorCode method to provide debugging informa-
tion, which will be displayed on the terminal when the exception is triggered.

/* set Error Code, if the errCode is not 0, an exaption would be throw out */
void obj_setErrorCode(PikaObj* self, int32_t errCode);
/* print out exaption infomation */
void obj_setSysOut(PikaObj* self, char* str);

8.1. Pika object PikaObj 179

PikaPython, Release 0.1

8.2 Parameter list Args

8.2.1 head File

#include "dataArgs.h"

8.2.2 Overview

1. The Args parameter table API is a series of functions prefixed with args_.

2. The Args parameter table API is designed using object-oriented ideas. The first entry parameters of these func-
tions are pointers to the parameter table to be manipulated.

3. The Args parameter table uses the key-value pair (Map) data model, or dictionary (Dist).

4. A parameter table can contain any number of parameters, each parameter is indexed by parameter name (key).

5. The parameters obtained by indexing can be basic data types (int, float, pointer, string) or generic parameters
(Arg).

6. The Args parameter table supports adding, deleting, modifying and searching parameters dynamically.

7. Args parameter table does not support nesting (the main difference from the PikaObj attribute).

8.2.3 type of data

The data type of the parameter table is Args.

typedef Link Args;

The parameter table is internally implemented based on a linked list (Link). Be careful not to directly access the
linked list inside Args, please use the Args API to access Args. For maximum backward compatibility.

8.2.4 Create and destroy the parameter table

1. Create a new parameter table, create a new parameter table from the heap, and return the pointer of the parameter
table. Note that the newly created parameter table needs to be destroyed manually to reclaim the memory.
Constantly creating new parameter tables without destroying them can lead to memory leaks.

[Note] To avoid memory leaks, please develop under docker development environment and ensure sufficient unit tests
and memory checks.

Args* New_args(Args* args);

The parameter passed in when creating a new parameter table is a reserved auxiliary parameter table, which is usually
filled with NULL.

1. Destroy the parameter table. When a parameter table is destroyed, all parameters inside the parameter table will
also be automatically destroyed.

void args_deinit(Args* self);

The pointer to the parameter table is passed in, and the parameter table is destroyed.

180 Chapter 8. Kernal API

get-start_linux.html

PikaPython, Release 0.1

8.2.5 CRUD API

This part of the API provides the addition, deletion, modification and query of the parameter table.

Basic types of additions, deletions, modifications and inspections

Args parameter table supports integer, floating point, pointer, string four basic types of parameters. Use the set and
get methods to read and write parameters in a parameter table.

The Args parameter table is dynamic, so new parameters can be added to the parameter table at any time.

The API for primitive type properties is as follows, which is similar to the parameter API for objects, but does not
support nesting:

/* set API */
int32_t args_setInt(Args* self, char* name, int64_t int64In);
int32_t args_setFloat(Args* self, char* name, float argFloat);
int32_t args_setPtr(Args* self, char* name, void* argPointer);
int32_t args_setStr(Args* self, char* name, char* strIn);

/* get API */
int64_t args_getInt(Args* self, char* name);
float args_getFloat(Args* self, char* name);
void* args_getPtr(Args* self, char* name);
char* args_getStr(Args* self, char* name);

Primitive type attributes are named args_set[Type] and args_get[Type].

1. The first input parameter is the pointer to the parameter table to be manipulated.

2. The second input parameter is the parameter name

3. The third input parameter of the set method is the written parameter value, and the return value of the get method
is the read parameter value.

4. The return value of the set method is an error code, 0 means no error occurred.

Generic parameters

args supports generic parameters and also provides set and get methods. Input parameters and return values are similar
to primitive types. args_getType can get the type of the argument.

int32_t args_setArg(Args* self, Arg* arg);
Arg* args_getArg(Args* self, char* name);
ArgType args_getType(Args* self, char* name);

Generic parameters need to be converted to primitive types when used.

Use the following API to determine the current type of a generic parameter.

ArgType arg_getType(Arg* self);

Generic parameters can be converted to primitive types using the following API.

8.2. Parameter list Args 181

PikaPython, Release 0.1

int64_t arg_getInt(Arg* self);
float arg_getFloat(Arg* self);
void* arg_getPtr(Arg* self);
char* arg_getStr(Arg* self);

Parameter management

1. Use the parameter name hash or parameter name to determine whether a parameter exists. The return value is 1
to indicate that it exists, and the times33 algorithm is used to obtain the parameter name hash.

int32_t args_isArgExist_hash(Args* self, Hash nameHash);
int32_t args_isArgExist(Args* self, char* name);
Hash hash_time33(char* str);

1. Delete a parameter using a pointer to a generic parameter

int32_t args_removeArg(Args* self, Arg* argNow);

The return value is an error code, and 0 indicates success.

8.2.6 traversal of parameter list

A parameter table can be traversed using the following API.

1. The first entry parameter is a pointer to the parameter table.

2. The second parameter is the function pointer of the callback function when traversing the parameters

3. The third parameter is an auxiliary parameter table, which is used to pass auxiliary parameters. When auxiliary
parameters are not used, the third input parameter can be filled with NULL.

int32_t args_foreach(Args* self,
int32_t (*eachHandle)(Arg* argEach, Args* handleArgs),
Args* handleArgs);

8.3 Generic parameters Arg

8.3.1 Header file

#include "dataArg.h"

182 Chapter 8. Kernal API

PikaPython, Release 0.1

8.3.2 Overview

1. arg The generic argument API is a set of functions prefixed with arg_.

2. arg can hold a value of any type in it. The types supported by arg are: int, float, pointer, string, null, bytes. 1.

3. arg can be put into an object and the value of arg can be accessed directly in the python script.

8.3.3 Data types

The data type of a generic argument is Arg.

typedef struct Arg Arg;
struct Arg {

Arg* next;
uint32_t size;
uint8_t type;
Hash name_hash;
uint8_t content[];

};

The generic arguments internally include header information (size, type, name_hash), the data body (content), and a
pointer (next) used to form the chain.

Be careful not to access the internal members of arg directly, use the arg API to access arg. for maximum backward
compatibility.

8.3.4 Creating and destroying generic arguments

• Creating a new generic argument

Creates a new generic argument from the heap and returns a pointer to the generic argument.

**Note that newly created generic parameters need to be manually destroyed to reclaim memory. Constantly creating
new generic parameters but not destroying them can lead to memory leaks. **

[Note] The following api requires a kernel version of at least v1.9.2

Arg* arg_newInt(int val);
Arg* arg_newFloat(double val);
Arg* arg_newPtr(ArgType type, void* pointer);
Arg* arg_newStr(char* val);
Arg* arg_newNull(void);
Arg* arg_newBytes(uint8_t* src, size_t size);

New arg The argument passed in is the value of arg.

• Destroy generic arguments.

void arg_deinit(Arg* self);

• Copy generic arguments

Arg* arg_copy(Arg* self);

Pass in a pointer to the generic argument and destroy the generic argument.

8.3. Generic parameters Arg 183

PikaPython, Release 0.1

8.3.5 Getting the value of a generic argument

Use the following API to determine the current type of a generic argument.

ArgType arg_getType(Arg* self);

Use the following API to convert a generic argument to a basic type.

int64_t arg_getInt(Arg* self);
float arg_getFloat(Arg* self);
void* arg_getPtr(Arg* self);
char* arg_getStr(Arg* self);
uint8_t* arg_getBytes(Arg* self);
size_t arg_getBytesSize(Arg* self);

8.3.6 Important Notes

Direct use of the arg_new<Type>() api **is highly likely to cause **memory leaks or dangling references, resulting in
fatal flaws.

Please develop under docker development environment to ensure sufficient unit testing and memory checking.

8.3.7 Case

Build a list of strings using arg

Include "PikaStdData_List.h"
...

/* Create a list object */
PikaObj* list = newNormalObj(New_PikaStdData_List);
/* initialize list */
PikaStdData_List___init__(list);
/* Create arg with api of arg_new<type> */
Arg* str_arg1 = arg_newStr("aaa");
/* add to list object */
PikaStdData_List_append(list, str_arg1);
/* destroy arg */
arg_deinit(str_arg1);

...

8.4 String pool Strs

8.4.1 head File

#include "dataStrs.h"

184 Chapter 8. Kernal API

get-start_linux.html

PikaPython, Release 0.1

8.4.2 Overview

1. The Strs string pool API is a series of functions prefixed with strs.

2. The string pool provides dynamic memory space for strings, supports any length strings, and a string pool can
store any number of strings.

3. Provide convenient memory management, when destroying the string pool, all the string memory in the pool
will be automatically batch destroyed.

4. Provide a safe operation method, when using the strs API, the quoted string will not be modified. All modi-
fications are made in the newly allocated memory area. Therefore, there will be no serious security problems
such as dangling pointers and tampered strings.

5. The Strs string pool API is designed using object-oriented ideas. The first entry parameters of these functions
are pointers to the operated string pool.

8.4.3 type of data

The data type of Strs is Args, and a parameter table is maintained internally.

typedef Link Args;

Be careful not to directly access the string pool’s parameter table, use the Strs API to access Strs for memory
safety and maximum backward compatibility.

8.4. String pool Strs 185

PikaPython, Release 0.1

186 Chapter 8. Kernal API

CHAPTER

NINE

CONFIGURATION AND ADVANCED FEATURES

9.1 PikaPython configuration manual

9.1.1 When to configure

PikaPython itself is configuration-free, so usually you don’t need to know this part.

You can consider configuring PikaPython when you have the following requirements:

• faster speed

• Smaller memory footprint

• Replace dependencies (libc, pinrtf, etc.)

• Replace memory management algorithm (malloc)

• Safer interruption protection

9.1.2 Optimization

[Note]: For optimized configuration, the kernel version needs to be at least v1.5.4

Similar to GCC, PikaPython also provides different optimization modes. The currently available optimization modes
are:

• PIKA_OPTIMIZE_SIZE volume mode minimizes running memory

• PIKA_OPTIMIZE_SPEED performance mode maximizes running speed

Enable user configuration

User configuration is not enabled by default. The way to enable user configuration is to add compile-time macro
definition PIKA_CONFIG_ENABLE. Then create the pika_config.h header file.

It should be noted that the PIKA_CONFIG_ENABLE macro should be added to the compile options, such as keil:

187

PikaPython, Release 0.1

Configuration items

Available configuration items and default configuration are in the pika_config_valid.h header file.

https://github.com/pikastech/pikascript/blob/master/src/pika_config_valid.h

Intercept the important part for explanation:

/* optimize options */
#define PIKA_OPTIMIZE_SIZE 0
#define PIKA_OPTIMIZE_SPEED 1

/* syntax support level */
#define PIKA_SYNTAX_LEVEL_MINIMAL 0
#define PIKA_SYNTAX_LEVEL_MAXIMAL 1

/* use user config */
#ifdef PIKA_CONFIG_ENABLE

#include "pika_config.h"
#endif

/* default optimize */
#ifndef PIKA_OPTIMIZE

(continues on next page)

188 Chapter 9. Configuration and advanced features

https://github.com/pikastech/pikascript/blob/master/src/pika_config_valid.h

PikaPython, Release 0.1

(continued from previous page)

#define PIKA_OPTIMIZE PIKA_OPTIMIZE_SIZE
#endif

/* default syntax support level */
#ifndef PIKA_SYNTAX_LEVEL

#define PIKA_SYNTAX_LEVEL PIKA_SYNTAX_LEVEL_MAXIMAL
#endif

...

/* default configuration */

#ifndef PIKA_STACK_BUFF_SIZE
#define PIKA_STACK_BUFF_SIZE 256

#endif

default configuration is the default value of the configuration item. When the PIKA_CONFIG_ENABLE macro is
defined, pika_config_valid.h will import pika_config.h, so User can override the above default configuration
in pika_config.h.

For example, if you want to increase the runtime stack of the PikaPython virtual machine, you can write in
pika_config.h

#define PIKA_STACK_BUFF_SIZE 512

As can be seen from pika_config_valid.h, the default optimization option of PikaPython PIKA_OPTIMIZE is
PIKA_OPTIMIZE_SIZE, if you need to switch to speed optimization, you can write in pika_config.h

#define PIKA_OPTIMIZE PIKA_OPTIMIZE_SPEED

Sample code

https://github.com/pikastech/pikascript/blob/master/bsp/stm32g070cb/Booter/pika_config.h

9.1.3 Dependency configuration

PikaPython can be configured by creating pika_config.c, rewriting the weak functions in PikaPlagform.h ‘s depen-
dencies.

/* interrupt config */
void __platform_enable_irq_handle(void);
void __platform_disable_irq_handle(void);

/* printf family config */
#ifndef __platform_printf
void __platform_printf(char* fmt, ...);
#endif
int __platform_sprintf(char* buff, char* fmt, ...);
int __platform_vsprintf(char* buff, char* fmt, va_list args);
int __platform_vsnprintf(char* buff,

size_t size,
(continues on next page)

9.1. PikaPython configuration manual 189

https://github.com/pikastech/pikascript/blob/master/bsp/stm32g070cb/Booter/pika_config.h
https://github.com/pikastech/pikascript/blob/master/src/PikaPlatform.h

PikaPython, Release 0.1

(continued from previous page)

const char* fmt,
va_list args);

/* libc config */
void* __platform_malloc(size_t size);
void __platform_free(void* ptr);
void* __platform_memset(void* mem, int ch, size_t size);
void* __platform_memcpy(void* dir, const void* src, size_t size);

/* pika memory pool config */
void __platform_wait(void);
uint8_t __is_locked_pikaMemory(void);

/* support shell */
char __platform_getchar(void);

/* file API */
FILE* __platform_fopen(const char* filename, const char* modes);
int __platform_fclose(FILE* stream);
size_t __platform_fwrite(const void* ptr, size_t size, size_t n, FILE* stream);

/* error */
void __platform_error_handle(void);

Configuration items:

• Interrupt Protection - Provides an interrupt master switch to protect PikaPython memory safety

• libC - select the implementation of libC

• Memory management - replace malloc free memory management algorithm

Sample code:

• https://github.com/pikastech/pikascript/blob/master/bsp/stm32g030c8/Booter/pika_config.c

• https://github.com/pikastech/pikascript/blob/master/package/pikaRTThread/pika_config.c

9.2 Run Bytecode Directly

The runtime architecture of PikaPython is shown below. By default, the process of parsing Python scripts into Pika
bytecode is executed in the MCU, which allows the MCU to run Python scripts directly, including support for interactive
running. Instead, in resource-constrained cases, the process of parsing Python scripts into bytecode can be done earlier
at the PC, allowing the Python script to be executed directly instead of parsing it in the MCU, so that the code to parse
the Python script can be trimmed out.

By avoiding the use of obj_run() to execute python scripts and running the bytecode directly, the compiler will
automatically optimize the Python parsed code and reduce the code size footprint.

190 Chapter 9. Configuration and advanced features

https://github.com/pikastech/pikascript/blob/master/bsp/stm32g030c8/Booter/pika_config.c
https://github.com/pikastech/pikascript/blob/master/package/pikaRTThread/pika_config.c

PikaPython, Release 0.1

9.2.1 Converting Python to bytecode on PC.

The precompiler rust-msc-latest-win10.exe integrates a bytecode generator that compiles main.py and the .py
files imported by main.py (including indirect import) to bytecode when precompiling, and the generated bytecode
files are in the pikascript-api folder.

The .py file is generated as a .py.o bytecode file, e.g. main.py generates pikascript-api/main.py.o.

At the same time, all .py.o files are automatically packaged into a library file pikascript-api/pikaModules.py.a,
which contains all bytecode files.

To facilitate the loading of the library files in mcu when compiling the firmware, the precompiler also automatically
converts the library files to C byte array files pikascript-api/__asset_pikaModules_py_a.c.

/* __asset_pikaModules_py_a.c */
#include "PikaPlatform.h"
/* warning: auto generated file, please do not modify */

(continues on next page)

9.2. Run Bytecode Directly 191

PikaPython, Release 0.1

(continued from previous page)

PIKA_BYTECODE_ALIGN const unsigned char pikaModules_py_a[] = {
0x7f, 0x70, 0x79, 0x61, 0x01, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x6d, 0x61, 0x69, 0x6e,

...

9.2.2 Using library file

Library files can be imported using the obj_linkLibrary() API, refer to the automatically generated
pikaScriptInit()

PikaObj *pikaScriptInit(void){
...

__pikaMain = newRootObj("pikaMain", New_PikaMain);
extern unsigned char pikaModules_py_a[];
obj_linkLibrary(__pikaMain, pikaModules_py_a);

...
}

After importing a library file, you can import the modules contained in the library file directly inside the python script.

It is also possible to run a module directly as a script, e.g.

obj_runModule(__pikaMain, "main");

9.2.3 Run a single bytecode

Read data from a single bytecode file .py.o and then use the pikaVM_runByteCode() API to just run the single
bytecode directly, see the usage of starting from bytecode in g030.

https://github.com/pikastech/pikascript/blob/master/bsp/stm32g030c8/Booter/main.c

Note

1. The byte code run by the pikaVM_runByteCode() API must be of type const, if the byte code is
not const, you need to use pikaVM_runByteCodeInconstant().

2. If you have already docked the file system, you can use the pikaVM_runByteCodeFile() API to
run the .py.o file directly.

3. pikaVM_runByteCodeInconstant() and pikaVM_runByteCodeFile() require kernel version
>=v1.11.7.

9.3 Event callback mechanism

9.3.1 Overview

The PikaPython kernel provides an event callback mechanism that supports triggering Python defined callback func-
tions in C events/interrupts.

Note: requires kernel version no less than: v1.8.7

192 Chapter 9. Configuration and advanced features

https://github.com/pikastech/pikascript/blob/master/bsp/stm32g030c8/Booter/main.c

PikaPython, Release 0.1

9.3.2 Headers

#include "PikaObj.h"

9.3.3 Data types

typedef PikaObj PikaEventListener;

The event callback mechanism relies on the PikaEventListener event listener, which records the ID of each regis-
tered event. When a signal is sent to the event listener, the event listener will call the corresponding Python callback
function based on the event ID, and pass the semaphore.

9.3.4 The Event Model

The core of the event model is the PikaEventListener event listener.

The PikaEventListener model is shown above. After registering an event to the event listener, an event item Event
Item will be recorded inside the PikaEventListener, including.

• Event ID the unique ID of the event

• Event Handler Object event object, which records all the information about the event item

• Event CallBack event callback function (Python function)

When the Event Signal event signal arrives, the event listener will match the Event ID to find the corresponding
event item, then pass the signal code Event Code to Event CallBak to trigger the callback function.

9.3. Event callback mechanism 193

PikaPython, Release 0.1

9.3.5 Event callback mechanism flow

1. Initialize the event listener

2. register callback functions in Python

3. Signal the event listener in C (usually in an interrupt or a callback in C)

4. the callback function registered in Python is executed

9.3.6 Support event callbacks via PikaStdDevice

Inheriting PikaStdDevice is the easiest way to support event callbacks, the PikaStdDevice.BaseDev device base
class already supports the event registration method addEventCallBack.

class BaseDev:
def addEventCallBack(self, eventCallback: any): ...

need override
def platformGetEventId(self): ...

• The device classes in PikaStdDevice (e.g. GPIO) all inherit from BaseDev, so they all get the
addEventCallBack method and can register callbacks.

/package/PikaStdDevice/PikaStdDevice.pyi

class GPIO(BaseDev):
...

After the platform driver inherits from PikaStdDevice.GPIO, it also gets the addEventCallBack method.

/package/TemplateDevice/TemplateDevice.pyi

TemplateDevice.pyi
class GPIO(PikaStdDevice.GPIO):

overrid
...

def platformGetEventId(self): ...
...

194 Chapter 9. Configuration and advanced features

https://github.com/pikastech/pikascript/blob/master/package/PikaStdDevice/PikaStdDevice.pyi
https://github.com/pikastech/pikascript/blob/master/package/TemplateDevice/TemplateDevice.pyi

PikaPython, Release 0.1

Just override the platformGetEventId platform method to be able to support registration callbacks.

For example.

/package/TemplateDevice/TemplateDevice_GPIO.c

const uint32_t GPIO_PA8_EVENT_ID = 0x08;
void TemplateDevice_GPIO_platformGetEventId(PikaObj* self) {

char* pin = obj_getStr(self, "pin");
if (strEqu(pin, "PA8")) {

obj_setInt(self, "eventId", GPIO_PA8_EVENT_ID);
}

}

9.3.7 Registering callback functions in Python

• Define a callback function callBack1 that takes an input parameter signal, signal can receive the incoming
signal number.

/examples/TemplateDevice/gpio_cb.py

import TemplateDevice

io1 = TemplateDevice.GPIO()
io1.setPin('PA8')
io1.setMode('in')
io1.enable()

EVENT_SIGAL_IO_RISING_EDGE = 0x01
EVENT_SIGAL_IO_FALLING_EDGE = 0x02

def callBack1(signal):
if signal == EVENT_SIGAL_IO_RISING_EDGE:

print('get rising edge!')
elif signal == EVENT_SIGAL_IO_FALLING_EDGE:

print('get falling edge!')

io1.addEventCallBack(callBack1)

9.3.8 Signal triggering

Send a signal to PikaEventListener when an event callback needs to be triggered.

Example: /port/linux/test/event-test.cpp

• Get the event listener provided by PikaStdDevice via extern PikaEventListener*
g_pika_device_event_listener.

• Send eventID and signal code via pks_eventLisener_sendSignal.

extern PikaEventListener* g_pika_device_event_listener;
#define EVENT_SIGAL_IO_RISING_EDGE 0x01
#define EVENT_SIGAL_IO_FALLING_EDGE 0x02
#define GPIO_PA8_EVENT_ID 0x08

(continues on next page)

9.3. Event callback mechanism 195

https://github.com/pikastech/pikascript/blob/master/package/TemplateDevice/TemplateDevice_GPIO.c
https://github.com/pikastech/pikascript/blob/master/examples/TemplateDevice/gpio_cb.py
https://github.com/pikastech/pikascript/blob/master/port/linux/test/event-test.cpp

PikaPython, Release 0.1

(continued from previous page)

TEST(event, gpio) {
/* init */
PikaObj* pikaMain = newRootObj("pikaMain", New_PikaMain);
/* run */
pikaVM_runFile(pikaMain, "... /... /examples/TemplateDevice/gpio_cb.py");
/* simulate run in the call back */
pks_eventLisener_sendSignal(g_pika_device_event_listener, GPIO_PA8_EVENT_ID,

EVENT_SIGAL_IO_RISING_EDGE);
pks_eventLisener_sendSignal(g_pika_device_event_listener, GPIO_PA8_EVENT_ID,

EVENT_SIGAL_IO_FALLING_EDGE);
...
}

• Running results.

get rising edge!
get falling edg!

Waiting for the return value

Event callback functions can have return values, such as returning signal directly.

def callBack1(signal):
return signal

io1.addEventCallBack(callBack1)

This function requires OS support, and the __platform_thread_delay() method needs to be overridden to be able
to dispatch events to the main process while waiting for a return value. If a return value is required, the trigger event
can use pks_eventLisener_sendSignalAwaitResult to get the return value of the callback function, which is an
``Arg*` type.

Arg* res_123 = pks_eventLisener_sendSignalAwaitResult(
g_pika_device_event_listener, GPIO_PA8_EVENT_ID, 123);

int res = arg_getInt(res_123);

Note: requires kernel version >= v1.11.7

9.3.9 Advanced: Custom event registration functions

• In addition to event callbacks supported by PikaStdDevice, you can also customize event registration functions,
which is an advanced part.

• Custom event registration requires a better understanding of PikaPython’s C-module mechanism and object
mechanism.

• Define a Python interface to a C module that receives incoming event callback functions.

For example.

/package/PikaStdDevice/PikaStdDevice.pyi

class BaseDev:
def addEventCallBack(self, eventCallback: any): ...

196 Chapter 9. Configuration and advanced features

https://github.com/pikastech/pikascript/blob/master/package/PikaStdDevice/PikaStdDevice.pyi

PikaPython, Release 0.1

The type annotation for the event callback function is any.

• Registering events in the C module implementation

Example: /package/PikaStdDevice/PikaStdDevice_BaseDev.c

PikaEventListener* g_pika_device_event_listener;

void PikaStdDevice_BaseDev_addEventCallBack(PikaObj* self, Arg* eventCallBack) {
obj_setArg(self, "eventCallBack", eventCallBack);
/* init event_listener for the first time */
if (NULL == g_pika_device_event_listener) {

pks_eventLisener_init(&g_pika_device_event_listener);
}
if (PIKA_RES_OK != obj_runNativeMethod(self, "platformGetEventId", NULL)) {

obj_setErrorCode(self, 1);
__platform_printf("Error: Method %s no found.\r\n",

"platformGetEventId");
}
uint32_t eventId = obj_getInt(self, "eventId");
pks_eventLicener_registEvent(g_pika_device_event_listener, eventId, self);

}

• Create a global PikaEventListener: g_pika_device_event_listener.

• Pass self as event handler object and evnetCallBack into self.

• Get evnetID.

– This example gets the eventID by calling the platformGetEventId() platform function, which requires
BaseDev inheritance, then rewrites platformGetEventId() and sets self. eventId in the overridden
platformGetEventId().

– For example: /package/TemplateDevice/TemplateDevice_GPIO.c

• Call pks_eventLicener_registEvent to register eventId and self into the event listener.

9.4 Compact Memory Pools

9.4.1 Overview

PikaPython has a built-in compact memory pool for small resource chips, which is not enabled by default.

Compact memory pooling can reduce memory fragmentation from the usual 20-30% to less than 5%.

Note] Compact memory pooling can slow down the operation speed.

9.4. Compact Memory Pools 197

https://github.com/pikastech/pikascript/blob/master/package/PikaStdDevice/PikaStdDevice_BaseDev.c
https://github.com/pikastech/pikascript/blob/master/package/TemplateDevice/TemplateDevice_GPIO.c

PikaPython, Release 0.1

9.4.2 Enabling method

Note that the kernel version must be at least v1.9.0.

Enable user configuration

Refer to the configuration document

Add configuration items

/* pika_config.h */
#define PIKA_POOL_ENABLE 1
#define PIKA_POOL_SIZE 0x1900

Where PIKA_POOL_ENABLE means open compact memory pool, PIKA_POOL_SIZE means the size of the memory
pool, the memory pool pre-apply memory from heap, please make sure the heap can apply to that size.

Refer to bsp/stm32g030c8/Booter/pika_config.h

Memory pool initialization

Initialize the memory pool before pikaScriptInit() or newRootObj().

mem_pool_init();

Reference: bsp/stm32g030c8/Booter/main.c

9.4.3 Freeing the memory pool

If the memory pool needs to be freed, call

mem_pool_deinit();

9.5 Interrupting a running script

Calling pks_vm_exit() forces the interruption of a running script (also in a dead loop), which can be placed in the
interrupt function.

[Note]

Requires kernel version not lower than v1.11.0.

After interrupting a running script, only the VM is exited, the root object can still be used and will not be
freed, if you need to free memory, you should execute obj_deinit() on the root object.

198 Chapter 9. Configuration and advanced features

https://gitee.com/Lyon1998/pikascript/blob/master/bsp/stm32g030c8/Booter/pika_config.h
https://gitee.com/Lyon1998/pikascript/blob/master/bsp/stm32g030c8/Booter/main.c

CHAPTER

TEN

CONTRIBUTE

10.1 How to contribute

10.1.1 We sincerely appreciate your contributions and welcome to submit code
through GitHub, Gitee’s fork and Pull Request process

You can contribute to PikaPython:

• Contribute to python examples

• Contribute to BSP for new platform

• Contribute to module

• Contribute to standard library

• Contribute to kernel

If you are new to the open source community, it is recommended to refer to Open Source Guide guide to learn how to
participate in the code contribution of the open source community.

10.1.2 It is not only by contributing code to participate in community contributions

you can also:

• use PikaPython in company products, personal projects or competitions;

• present your work, ask or answer questions in the PikaPython Forum;

• Submit an issue and report bugs to PikaPython at GitHub or Gitee;

• Participate in community activities and B station live broadcast;

• Purchase Development Board - Pika Pie officially supported by PikaPython ;

199

https://github.com/pikastech/pikascript/tree/master/examples
contribute_to_stdlib.html
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://whycan.com/f_55.html
https://github.com/pikasTech/pikascript
https://gitee.com/lyon1998/pikascript
https://space.bilibili.com/5365336
https://item.taobao.com/item.htm?spm=a230r.7195193.1997079397.8.560344bf9htrXT&id=654947372034&abbucket=9

PikaPython, Release 0.1

• Invite the author to drink the ice;

10.2 How to contribute to PikaPython BSP

10.2.1 Steps to make BSP:

Make pikascript template project

• The BSP of pikascript is very simple, it is a pikascript template project that can be compiled independently.

• This project only needs to be able to run pikascript basically.

• You can refer to the New Platform Porting Guide to ensure that print('hello PikaPython!') in main.py
can be run normally.

200 Chapter 10. Contribute

PikaPython, Release 0.1

Clean up project

• Clean up compiled products, leaving only project files and source code. (The compilation products include
intermediate files .o .d , binary products .bin, .hex , executable files .exe , etc.).

• Clean up the auto-pull and auto-generate codes in the pikascript folder. Only the main.py, requsetment.txt, and
pikaPackage.exe files can be kept in the pikascript folder.

• Clean up unused source code and libraries, and control the size of the project to within 50MB. If the size of the
project is still larger than 50MB after cleaning, you can create a new special warehouse to place the BSP, and
only place a README.md containing a link to the special warehouse in pikscript/bsp.

Submit file

• Enter the pikascript code repository, either gitee or github, fork a pikascript repository, and then clone the forked
repository locally.

• Create a new folder in the [repository after fork]/bsp directory, then copy it into the template project, use the git
command to add files, and push it to the pikascript repository after fork.

cd pikascript/bsp
git add *
git commit -m 'add bsp'
git push

• (Optional) Update BSP information in pikascript/README.md and pikascript/README_zh.md.

• Open Pull Request and wait for merge.

10.3 How to contribute to modules

10.3.1 Help improve existing modules

Pull the latest module

• When adding new content to an existing module, make sure you have pulled the latest module.

• The way to pull the latest module is to use the latest version in requestment.txt.

E.g:

STM32G0==latest

• Delete the modules that need to be developed in reqeustment.txt, to prevent misoperation (such as pulling
the module again) causing the module being developed to be overwritten.

10.3. How to contribute to modules 201

PikaPython, Release 0.1

Modify the module and test

• Add new Python interface for modules –> [module].pyi

• Or provide a better implementation –> pikascript-lib/[module]/*.c

• (Optional) Update module information in pikascript/README.md and pikascript/README_zh.md.

Submit the module’s files

• fork a pikascript repository, then clone it locally.

• Copy [module].pyi to pikascript-lib/[module] folder.

• Copy the entire modified pikascript-lib/[module] folder into the forked pikascript/package folder.

• git add adds files, and git commit commits once.

• git log View the commit id after the commit, fill in the new version name in pikascript/packages.toml after fork,
and copy the current commit id.

E.g:

[[packages]]
name = "STM32G0"
releases = [
"v1.0.2 0052a28582ac8a85cc48e1d676d9a3be5cb1b93f",
"<new version name> <current commit id>",

]

• git commit -a commits again, adding modifications to packages.toml.

• git push to your forked repository.

• Submit a pull request.

10.3.2 Commit the new module

• Create a new [module].pyi file and pikascript-lib/[module] folder.

• Develop and test new modules.

• (Optional) Update module information in pikascript/README.md and pikascript/README_zh.md.

• Submit the module’s files

– Fork a pikascript repository, then clone it locally.

202 Chapter 10. Contribute

PikaPython, Release 0.1

• Copy [module].pyi to pikascript-lib/[module] folder.

• Copy the entire pikascript-lib/[module] folder to the forked pikascript/package folder.

• git add adds files, and git commit commits once.

• git log View the submitted commit id, add a new module to pikascript/packages.toml after fork, and fill in the
module name, version name and current commit id.

E.g:

[[packages]]
name = "<new module name>"
releases = [
"<new version name> <current commit id>",

]

• git commit -a commits again, adding modifications to packages.toml.

• git push to your forked repository.

• Submit a pull request.

10.4 How to contribute to the standard library

10.4.1 What are PikaPython standard libraries?

PikaPython standard libraries are a set of cross-platform libraries for common tools such as string, time, etc.

Some of these libraries provide APIs consistent with or similar to CPython, and some provide common tools for MCU
development.

10.4.2 PikaPython standard library development environment construction

The PikaPython standard library is cross-platform, so it can’t use the proprietary resources of the platform (e.g. stm32),
to ensure this, the standard library is developed on linux platform.

PikaPython deploys GoogleTest unit testing framework on linux platform to provide test cases for these standard li-
braries, GoogleTest can be run on the developer’s local machine and also automatically in the cloud (based on Github
Actions).

10.4. How to contribute to the standard library 203

PikaPython, Release 0.1

Build Docker container

get start -> get start with docker

10.4.3 Use VSCODE to connect to the container for development

Start

VSCODE provides tools to connect to containers for development, and the development experience is as good as if you
were outside the container.

Select Remote, Containers, pikadev in the VSCODE sidebar, then click Open Directory to connect to Docker inside
VSCODE.

204 Chapter 10. Contribute

get-start_linux.html

PikaPython, Release 0.1

The first time you open it, you need to wait for some plugins to be installed automatically, then you can open it again
and start it directly.

10.4. How to contribute to the standard library 205

PikaPython, Release 0.1

cd to ~/pikascript/port/linux, then type code . to switch the working path to pikascript/port/linux

Compile and run

• Initialize

sh pull-core.sh # Update kernel source code

• Pre-compile and configure CMake

sh init.sh

• Compile

sh only_make.sh

• test

sh gtest.sh # run google test
sh ci_benchmark.sh # run benchmark
sh valgrind.sh # run valgrind

• run

sh run.sh # Start REPL

Development

The pyi declaration files for the standard library are in the package/pikascript directory. The standard library includes
PikaStdLib.pyi, PikaStdData.pyi, PikaDebug.pyi, PikaStdTask.pyi, etc.

The implementation files are in the PikaStdLib folder.

206 Chapter 10. Contribute

PikaPython, Release 0.1

Then you can add classes, or functions to the standard library, for example, add a startswith() method to the
PikaStdData.String class by first adding a declaration for the startswith() method under the String class in
PikaStdData.pyi.

10.4. How to contribute to the standard library 207

PikaPython, Release 0.1

Then run.

sh init.sh

to pre-compile and reconfigure CMake.

208 Chapter 10. Contribute

PikaPython, Release 0.1

Then open PikaStdData_String.h and you will find the c function declaration for the automatically generated
startswith method.

Next, implement this function in PikaStdData_String.c.

10.4. How to contribute to the standard library 209

PikaPython, Release 0.1

Testing

Then you can run GoogleTest to see if it breaks the original code.

sh gtest.sh

210 Chapter 10. Contribute

PikaPython, Release 0.1

If the tests all pass, you can write the code for the functional tests.

The test code is in the test directory.

10.4. How to contribute to the standard library 211

PikaPython, Release 0.1

212 Chapter 10. Contribute

PikaPython, Release 0.1

The tests for the standard library can be placed under pikaMain-test.cpp.

The contents of a test case are as follows: first, declare a test case with the TEST macro, then fill in the name of the test
group, and the name of the test case, the name of the test group can be the same as the other test cases in the current
file, the test name needs to be different from the other test cases.

TEST(<test group>, <test name>){

/* do something */

/* assert */

/* deinit */
}

The measurement example is divided into three main parts.

• Running

• Judgment

• Analysis

Here is a typical test case, we copy this test case and change the name of the test case.

TEST(pikaMain, a_signed) {
/* init */
pikaMemInfo.heapUsedMax = 0;
PikaObj* pikaMain = newRootObj("pikaMain", New_PikaMain);
/* run */
obj_run(pikaMain, "a = -1\n");
/* collect */
int a = obj_getInt(pikaMain, "a");

/* assert */
EXPECT_EQ(-1, a);

/* deinit */
obj_deinit(pikaMain);
EXPECT_EQ(pikaMemNow(), 0);

}

We modify the obj_run() part, run a python script, and then take the result and use the EXPECT_EQ macro to
determine the result.

TEST(pikaMain, string_startswith) {
/* init */
pikaMemInfo.heapUsedMax = 0;
PikaObj* pikaMain = newRootObj("pikaMain", New_PikaMain);
/* run */
obj_run(pikaMain,
"a = PikaStdData.String('test')\n"
"res1 = a.starswith('te')\n"
"res2 = a.startswith('st')\n"
);
/* collect */

(continues on next page)

10.4. How to contribute to the standard library 213

PikaPython, Release 0.1

(continued from previous page)

int res1 = obj_getInt(pikaMain, "res1");
int res2 = obj_getInt(pikaMain, "res2");

/* assert */
EXPECT_EQ(res1, 1);
EXPECT_EQ(res2, 0);

/* deinit */
obj_deinit(pikaMain);
EXPECT_EQ(pikaMemNow(), 0);

}

The EXPECT_EQ macro is provided by GoogleTest to determine if two values are equal, if not, GoogleTest will throw
an error, you can check GoogleTest’s documentation to learn more.

Then we run GoogleTest again

sh gtest.sh

As you can see, the number of test cases is 331, one more than the previous 330, and they all pass, which means the
test is successful.

Commit

Once the test passes, you can commit the changes.

Before committing the changes, you need to fork the PikaPython repository, Gitee and Github are both available.

The first time you commit, you need to change your commit information, including your username, email, and the
repository address after fork.

git config --global user.name < your user name >
git config --global user.email < your email >
git config remote.origin.url < your forked git repo url >

Run

214 Chapter 10. Contribute

PikaPython, Release 0.1

sh push-core.sh

Commit the modified code to ~/pikascript/package/PikaStdLib.

Then run

git commit -a

Enter the commit information, and if you are not familiar with vim, learn the basics of using vim yourself.

Next you can commit

git push

If there is a conflict, you can first

git pull --rebase

and then git push. For more information on how to use git, see the git manual.

Then launch a Pull Request in gitee / github

10.4. How to contribute to the standard library 215

PikaPython, Release 0.1

10.5 How to contribute to the kernel

10.5.1 Development Conventions

Note: For items listed as Avoid-in-principle, if they are really required, each use-case need to be discussed separately.

Exceptions

• PLOOC - The Protected Low-overhead Object Oriented Programming

• __instruction_def.h - simplify the management of VM instructions in coding.

10.5.2 Kernel development environment

Option 1 Development under docker (recommended)

get start -> get start with docker

Option 2 pico real machine development

Prepare a copy of the Raspberry Pi pico development board, then clone the complete repository and use the bsp/pico-dev
project in the repository.

10.5.3 Object-Oriented Programming with ANSI-C

Overview

PikaPython employs the popular Object-Oriented Programming with ANSI-C, a.ka. OOPC methodology in the
design and uses an open-source OOPC template, i.e. PLOOC in the kernel. In addition to the normal structure based
class definition, PLOOC introduced a so-called masked-structures. With this trick, members of a class can not only be
marked as private, protected and public, but also actually protected as private/protected as other native OO languages
do, such as C++, C# etc.

For example, in the dataMemory.h, it defines a class Pool:

216 Chapter 10. Contribute

https://github.com/GorgonMeducer/PLOOC
https://github.com/pikasTech/pikascript/blob/master/src/__instruction_def.h
get-start_linux.html
https://github.com/GorgonMeducer/PLOOC

PikaPython, Release 0.1

#if defined(__DATA_MEMORY_CLASS_IMPLEMENT__)
#define __PLOOC_CLASS_IMPLEMENT__
#elif defined(__DATA_MEMORY_CLASS_INHERIT__)
#define __PLOOC_CLASS_INHERIT__
#endif

#include "__pika_ooc.h"

...

struct Pool{
private_member(

BitMap bitmap;
uint8_t* mem;
uint8_t aline;
uint32_t size;
uint32_t first_free_block;
uint32_t purl_free_block_start;

)
};

Here, all members are embraced with private_member(), that means outside the class scope, people cannot
see/access those private members, as shown below:

While, in the dataMemory.h, a macro __DATA_MEMORY_CLASS_IMPLEMENT__ is added before any includings:

#define __DATA_MEMORY_CLASS_IMPLEMENT__
#include "dataMemory.h"
#include "PikaPlatform.h"
...

hence, inside those method functions of the class Pool, we can see/access all members listed as private:

This is because macro __DATA_MEMORY_CLASS_IMPLEMENT__ marks the whole dataMemory.c as it is inside the
Pool class scope.

10.5. How to contribute to the kernel 217

PikaPython, Release 0.1

Visibility Control

PLOOC is a tool to force a visibility control in the c programming. There are plenty of ways to remove those visibility
control in different scales, as shown in the Table 3-1:

Table 3-1 Summary of visibility controls in PLOOC

NOTE: Please use these Tokens carefully and following the OO design principles.

Rules of using PLOOC inside PikaPython

• We only use PLOOC inside kernel in principle

• Contributors are NOT forced to use PLOOC even contribute to the kernel.

– Unless otherwise state, we assume that you agree that the maintainer are authorized to modify your code
for adding PLOOC.

218 Chapter 10. Contribute

CHAPTER

ELEVEN

COLUMN TUTORIAL

11.1 STM32F429 PikaPython Practice Notes

Author: Once_day

• PikaScript(1)hello world

11.2 MM32 PikaPython Practical development

Author xld0932

• [MM32 ecology] Based on pikascript on the mm32 platform, the python development environment

• [MM32 ecology] Serial port download Python script, run snake

219

https://blog.csdn.net/Once_day
https://blog.csdn.net/Once_day/article/details/126552628
https://bbs.21ic.com/icview-3236202-1-1.html
https://bbs.21ic.com/icview-3232352-1-1.html
https://bbs.21ic.com/icview-3236202-1-1.html

PikaPython, Release 0.1

220 Chapter 11. Column Tutorial

CHAPTER

TWELVE

SELECTED TECHNICAL ARTICLES

12.1 Issue 1

12.1.1 [MM32] Python

12.1.2 [MM32] PikaScriptMM32Python

12.1.3 HC32F460 Upython19264–PikaScript

12.1.4 [Hacker News] Python TypeScript

12.1.5 [YouTube] PikaPython Build and Test in STM32 Clone

12.1.6 [CNX] PikaPythonSTM32MCUPython

12.1.7 [YouTube] Python in STM32? w806? Not so fast. . . - PikaPython Review

12.1.8 [reddit] pikascript: An ultra-lightweight Python engine that can run with 4KB
of RAM and 32KB of Flash (such as STM32G030C8 and STM32F103C8), and
is very easy to deploy and expand.

12.1.9 [Hacker News] Pikascript: An ultra-lightweight Python engine that can run
in 4Kb of RAM

12.1.10 [OpenNet] PikaPython 1.8, Python

12.1.11 [CNX] PikaPython – A lightweight Python implementation that runs on
STM32 and other low-end MCUs

12.1.12 [whycan] IARUpy

221

PikaPython, Release 0.1

222 Chapter 12. Selected Technical Articles

CHAPTER

THIRTEEN

BUSINESS COOPERATION

13.1 General

1. The PikaPython open source project abides by the MIT Open Source License.

13.2 Source code usage

1. The use of the source code follows the MIT agreement, no additional authorization is required.

2. When using the PikaPython source code, must not have any behavior or intention beyond the MIT open
source agreement.

13.3 Custom Development Services

1. Customized development services include: development board adaptation, driver development, desktop software
development, server software development, circuit board design, product design, etc.

2. Custom development services Negotiated fees based on labor volume, and:

1. Must sign labor contract.

2. Requirements document must be provided

3. The purchaser must be a valid legal person.

4. The deposit must be no less than 50%.

5. Documentation, maintenance, technical support service fees are negotiable and must be signed** inde-
pendent contracts, not included in custom development services. **

3. The source code, documents, design drawings and other copyrights that have been disclosed in the
PikaPython code repository still belong to the PikaPython project team.

4. The copyright of the custom development part belongs to the service purchaser, and the purchaser com-
pletely decides whether to open source, and how to use it.

223

PikaPython, Release 0.1

13.4 product marketing

PikaPython-based products (development boards, modules, kits, etc.) can be promoted on the PikaPython project
homepage, manual, website, etc. Charges are charged according to the promotion time/form, and new products can
apply for a period of free promotion.

13.5 Training Services

1. The training service is negotiated and charged according to the working time, work content and expected effect,
and:

1. Must sign a labor contract.

2. Party A must be a valid legal person.

3. The deposit must be no less than 30%.

4. After the training service period ends, technical support will no longer be provided.

224 Chapter 13. Business cooperation

CHAPTER

FOURTEEN

DEVELOPMENT MEETING

14.1 PikaPython kernel advanced

Video link

14.1.1 outline

1. Overview of kernel development

Second, the construction of the kernel development environment

1. Test Driven Development

2. Kernel distribution and upstream and downstream

14.1.2 Kernel development overview

Kernel development environment: linux

Kernel deployment environment: mcu (ARM, Risc-V, Others)

Reasons to choose linux

Kernel requirements: cross-platform capability, stability

Only cross-platform, cross-platform Only fully tested can it be stable

Development requirements: mainstream platform, convenient debugging, complete testing tools

Use mainstream platforms, mainstream technologies, and build only one wheel at a time

225

https://www.bilibili.com/video/BV12Z4y167SP

PikaPython, Release 0.1

Team requirements: Avoid relying on hardware, unified development environment

Reduce the difficulty of joining new members and solve the obstacle of physical distance (the express fee is very
expensive) Reduce the cost of trial and error (what should I do if the hardware test board is burned) Simplify the
construction of the development environment (why can’t your software be used on my computer)

Project requirements: easy to deploy automation facilities, CI-CD, easy software distribution

Automate all steps that can be automated to reduce maintenance costs

226 Chapter 14. Development Meeting

PikaPython, Release 0.1

Kernel development steps

14.1. PikaPython kernel advanced 227

PikaPython, Release 0.1

95% of the workload before the real machine test

14.1.3 Kernel environment construction

14.1.4 Test Driven Development

Implement functionality -> write unit tests

14.1.5 Kernel distribution and upstream and downstream

228 Chapter 14. Development Meeting

	Introduction
	Principle introduction
	Introduction MCU and scripting languages
	The principle analysis of PikaPython
	PikaRun script run layer
	PikaObj Object Support Layer
	dataArgs dynamic parameter list
	dataMemory

	Light a light with PikaPython
	Write an onFun() function.
	Write the constructor for the LED1 class.
	Write the constructor for the root object.
	Create a root object and listen for incoming data from the serial port. When the entire row of data is obtained, it is directly executed as a script.

	Implement an addition function in PikaPython.
	Write an add() function.
	Define the constructor of the test class
	Write the constructor for the root object.
	Create object and test run script

	Constructing classes and objects more easily

	Demo show
	Demo 01 Light up
	Demo 02 Serial port test
	Demo 03 Try reading an ADC
	RAM resource comparison
	Flash resource comparison
	Reference price comparison (take the price of 10 pieces of Lichuang Mall on September 11, 2021 as a reference)
	How about the expansion ability?
	A few small squares~
	Several rotating suns~
	So, is PikaPython open source?
	Is it difficult to develop?
	Can it be commercialized?

	Syntax support
	object support
	Operator
	Control flow
	Module
	List/Dict
	Exception
	Slice
	Other keywords/Syntax

	Get Start
	How to Get Started with PikaPython using KEIL Simulator
	Create project
	Run the simulation project

	REPL
	How to Run a different python script

	Use BSP project
	create project
	The source of the project
	Support list
	Projcet structure
	module management
	Precautions

	Start with RT-Thread package
	Install
	start pikascript
	Using the PikaPython module and package manager

	Start with CMSIS-PACK
	Install PikaTech.PikaPython.x.x.x.pack
	Set in the project

	Start with the Docker Development Environment
	Why use docker development environment
	Build Docker container

	Start with the LVGL GUI Simulation Project
	Get the project
	Programming with Python
	Frequently Asked Questions

	Play Python on Raspberry Pi Pico in MDK
	ARM-2D based GUI simulation project
	Preface
	Get the simulation project
	Install the development environment
	rt-thread studio installation package link
	arm gcc installation package link

	run
	Modify the python code and try
	Conclusion

	Development Board
	Pika Pie Development Board Quick Start
	Development board acquisition
	Video tutorials
	How to download the Python program for the microcontroller
	What is written in the GPIO script?
	Interpretation of other Python routines
	ADC
	UART
	PWM
	RGB
	LCD

	run interactively
	LCD screen installation
	Firmware upgrade
	Compile the firmware yourself
	Download the compiled firmware directly
	Serial Bootloader upgrade
	Upgrade using SWD
	Download Python program using firmware

	ARM-2D GUI engine
	common problem
	Schematic
	Lite Youth Edition
	Pro Professional Edition
	Plus top version
	LCD

	Porting
	Deploy to new platform in ten minutes
	How to choose a platform that can run pikascript
	Deployment operation process
	Prepare template project
	Get PikaPython source code and toolset
	Download PikaPython Package Manager
	Pull source code

	Precompile modules
	Add source code
	Adjust stack
	Start PikaPython
	compile source code
	Contribute BSP
	Add peripheral support

	Interactive Run
	Option 1: Read and run by byte (recommended)
	Implement a blocking byte read function
	Start PikaPython Shell and run pikaScriptShell() directly to start interactive operation.
	Sample code
	Precautions:

	Option 2: Run by byte input
	Caution.

	Option 3: Read and run the entire line
	Driven Content
	Notes:

	Quit Interaction
	Run temporary files
	Run Python files
	Run the bytecode file

	Docking with IDE
	Overview
	calling method
	1. Start path:
	2. Package Manager
	3. Precompiler

	Project Files
	example

	Serial port download Python script
	Store Python source code
	Store Pika bytecode

	Running Files Using the File System

	Module Development
	Module Import
	Importing Python modules
	Experiment

	Importing C modules
	Experiment

	Package manager
	Click to download Package Manager
	PikaPackage package manager
	Workflow of PikaPackage
	Error troubleshooting

	Standard Library
	PikaStdLib standard library
	Install
	import
	class MemChecker()
	class SysObj()

	PikaStdDevice Standard Device
	Installation
	Why do we need a standard device module
	Module structure
	PikaStdDevice module example
	pika_hal device abstraction layer
	Design philosophy
	Programming model
	open()
	close()
	ioctl()
	read()
	write()
	Driver adaptation
	Case Tutorial 1 - Adaptation of WIFI devices on ESP32

	Contribute

	PikaStdData data structure
	Install
	import
	class List():
	Methods of the List class
	Use ‘[]’ brackets to index the list
	Use for loop to iterate over List

	class Dict():
	Dict class methods
	Index dictionary using ‘[]’ brackets
	Using a for loop to iterate over a Dict

	class ByteArray(List)

	PikaStdTask multitasking
	Install
	class Task():
	Methods of the Task class
	Instructions:
	Notice:
	Example:

	PikaDebug debugger
	Install
	class Debuger():
	Debuger class methods

	PikaCV Image Processing Libraries
	Install
	Import
	class Image():
	Image write and read
	Image properties
	Image operations

	class Converter():
	class Transforms():
	class Filter

	requests module declaration
	Module basic information
	install
	usage
	Concatenate URL
	post port
	Running process

	PIKA-MQTT libary
	__init__()
	setClientID()
	setUsername()
	setPassword()
	setVersion()
	setCa()
	setKeepAlive()
	setWill()
	setDisconnectHandler()
	connect()
	disconnect()
	subscribe()
	unsubscribe()
	listSubscribeTopics()
	publish()
	Attachment 1: Error code
	Second:Comprehensive example

	C Module - bind C code to Python module
	PikaPython C module overview
	PikaPython module and module interface
	Importing and calling modules

	PikaPython C module development process
	New module interface
	Writing class interfaces
	Writing the class implementation
	Test the effect
	Available type annotations
	Publishing modules

	C module variable parameters
	C module keyword parameters
	C module returns List/Dict
	List
	Dict

	C module constants
	C module initialization
	Module clipping
	Cut by module
	Cut by class

	Kernal API
	Pika object PikaObj
	head File
	Overview
	type of data
	Object Properties API
	Attributes of primitive types
	Generic properties
	Property management

	Object method API
	Method call API

	Throw an exception

	Parameter list Args
	head File
	Overview
	type of data
	Create and destroy the parameter table
	CRUD API
	Basic types of additions, deletions, modifications and inspections
	Generic parameters
	Parameter management

	traversal of parameter list

	Generic parameters Arg
	Header file
	Overview
	Data types
	Creating and destroying generic arguments
	Getting the value of a generic argument
	Important Notes
	Case

	String pool Strs
	head File
	Overview
	type of data

	Configuration and advanced features
	PikaPython configuration manual
	When to configure
	Optimization
	Enable user configuration
	Configuration items
	Sample code

	Dependency configuration
	Configuration items:
	Sample code:

	Run Bytecode Directly
	Converting Python to bytecode on PC.
	Using library file
	Run a single bytecode

	Event callback mechanism
	Overview
	Headers
	Data types
	The Event Model
	Event callback mechanism flow
	Support event callbacks via PikaStdDevice
	Registering callback functions in Python
	Signal triggering
	Waiting for the return value

	Advanced: Custom event registration functions

	Compact Memory Pools
	Overview
	Enabling method
	Enable user configuration
	Add configuration items
	Memory pool initialization

	Freeing the memory pool

	Interrupting a running script

	Contribute
	How to contribute
	We sincerely appreciate your contributions and welcome to submit code through GitHub, Gitee’s fork and Pull Request process
	It is not only by contributing code to participate in community contributions
	you can also:

	How to contribute to PikaPython BSP
	Steps to make BSP:
	Make pikascript template project
	Clean up project
	Submit file

	How to contribute to modules
	Help improve existing modules
	Pull the latest module
	Modify the module and test
	Submit the module’s files

	Commit the new module

	How to contribute to the standard library
	What are PikaPython standard libraries?
	PikaPython standard library development environment construction
	Build Docker container

	Use VSCODE to connect to the container for development
	Start
	Compile and run
	Development
	Testing
	Commit

	How to contribute to the kernel
	Development Conventions
	Exceptions

	Kernel development environment
	Option 1 Development under docker (recommended)
	Option 2 pico real machine development

	Object-Oriented Programming with ANSI-C
	Overview
	Visibility Control
	Rules of using PLOOC inside PikaPython

	Column Tutorial
	STM32F429 PikaPython Practice Notes
	MM32 PikaPython Practical development

	Selected Technical Articles
	Issue 1
	[MM32生态] Python，让嵌入式应用开发更便捷、更高效、更专注
	[MM32生态] 基于PikaScript在MM32平台上部署Python开发环境
	HC32F460 实现模拟U盘导入python脚本在19264点阵屏上绘图–PikaScript移植
	[Hacker News 周报] 超轻量级 Python 引擎；快速阅读英文插件；TypeScript 发布新版本
	[YouTube] PikaPython Build and Test in STM32 Clone
	[CNX 中文站] PikaPython，可在STM32和其他低端MCU上运行的超轻量级Python引擎
	[YouTube] Python in STM32? w806? Not so fast… - PikaPython Review
	[reddit] pikascript: An ultra-lightweight Python engine that can run with 4KB of RAM and 32KB of Flash (such as STM32G030C8 and STM32F103C8), and is very easy to deploy and expand.
	[Hacker News] Pikascript: An ultra-lightweight Python engine that can run in 4Kb of RAM
	[OpenNet] Доступен PikaPython 1.8, вариант языка Python для микроконтроллеров
	[CNX] PikaPython – A lightweight Python implementation that runs on STM32 and other low-end MCUs
	[whycan] IAR里运行U盘里的py脚本

	Business cooperation
	General
	Source code usage
	Custom Development Services
	product marketing
	Training Services

	Development Meeting
	PikaPython kernel advanced
	outline
	Kernel development overview
	Reasons to choose linux
	Kernel requirements: cross-platform capability, stability
	Development requirements: mainstream platform, convenient debugging, complete testing tools
	Team requirements: Avoid relying on hardware, unified development environment
	Project requirements: easy to deploy automation facilities, CI-CD, easy software distribution

	Kernel development steps

	Kernel environment construction
	Test Driven Development
	Kernel distribution and upstream and downstream

